• Schalter wissen.de
  • Schalter wissenschaft
  • Schalter scinexx
  • Schalter scienceblogs
  • Schalter damals
  • Schalter natur
Scinexx-Logo
Logo Fachmedien und Mittelstand
Scinexx-Claim
Facebook-Claim
Google+ Logo
Twitter-Logo
YouTube-Logo
Feedburner Logo
Dienstag, 25.07.2017
Hintergrund Farbverlauf Facebook-Leiste Facebook-Leiste Facebook-Leiste
Scinexx-Logo Facebook-Leiste

"Bekleidete" Elektronen speichern Informationen

Physiker entschlüsseln extreme Widerstandsänderungen in Metall-Sauerstoff-Verbindungen

Bestimmte Metall-Sauerstoff-Verbindungen wie das Oxid des chemischen Elements Mangan weisen besondere Eigenschaften in ihrer Leitfähigkeit aus: So kann der elektrische Widerstand durch äußere Einwirkung so beeinflusst werden, dass sich ein Manganat von einem Isolator in einen Stromleiter verwandelt. Wissenschaftlern ist es nun gelungen, die Ursachen dieser "kolossalen Widerstandsänderungen" zu entschlüsseln.
Widerstandsänderungen in Manganaten

Widerstandsänderungen in Manganaten

Das Verständnis der physikalischen Effekte ist von Bedeutung für die Entwicklung einer neuen Form von Datenspeichern, so genannten nichtflüchtigen Speicherchips für Handys und USB-Sticks, so die Forscher in der Fachzeitschrift "Proceedings of the National Academy of Sciences of the United States of America" (PNAS). Dabei werden die Informationen abgelegt in unterschiedlichen Widerstandszuständen des Manganats, die durch kleine elektrische Impulse geschaltet werden können.

Stabile Verbindungen


Das Element Sauerstoff - mit fast 20 Prozent Volumenanteil in der Erdatmosphäre eines der am häufigsten vorkommenden Gase - geht mit Metallen sehr stabile Verbindungen ein. Zu den besonders faszinierenden Metall-Sauerstoff-Verbindungen gehören die Oxide der Übergangsmetalle Eisen, Kobalt, Nickel, Kupfer und Mangan. Diese bilden mit symmetrisch um sich gruppierten Sauerstoffatomen im Gerüst eines weiteren Metalls die so genannte Perowskit-Struktur.

Zu diesen Perowskiten gehören die Manganate, die eine extreme Abhängigkeit ihres elektrischen Widerstands von äußeren Einwirkungen aufweisen. So können durch Magnetfelder, Licht oder Druck Änderungen der Leitfähigkeit von bis zu zehn Größenordnungen hervorgerufen werden. Der Perowskit verwandelt sich dabei von einem Isolator zu einem elektrischen Leiter.


Polaronen im Visier der Forscher


Aufbau der Kristallstruktur

Aufbau der Kristallstruktur

Grundlegendes Problem beim physikalischen Verständnis dieser Effekte, die als kolossale Widerstandsänderungen bezeichnet werden, ist die hohe Komplexität der Elektronenzustände in diesen Materialien. Manganate zeigen in besonders ausgeprägter Weise ein korreliertes Verhalten der Elektronen: Sie beeinflussen sich gegenseitig durch starke elektrische und magnetische Kräfte.

Darüber hinaus verursachen sie bei ihrer Bewegung durch das Kristall - gemeint ist damit die dreidimensional und periodisch angeordnete Struktureinheit der Metall- Sauerstoff-Verbindung - eine Verschiebung der Atome aus den idealen Positionen des Kristallgitters, das sich mit dem Elektron mitbewegen kann. Diese mit dem Feld ihrer Gitterverzerrung "bekleideten" Elektronen sind in der Physik auch als Polaronen bekannt.

Manganate werden zu Isolatoren


Physiker der Universität Göttingen um Christian Jooß haben nun zusammen mit Wissenschaftlern des Brookhaven National Laboratory in New York und des Department of Physics der University of Illinois in Chicago einen Durchbruch im Verständnis der Bewegung und Ordnung von Polaronen als wesentliche Ursache für kolossale Widerstandsänderungen in Manganaten erzielt. Mit Hilfe moderner Elektronenmikroskopie konnte eine räumlich geordnete periodische Anordnung der "bekleideten Elektronen" nachgewiesen werden. Die Polaronen kristallisieren zu einem periodischen Muster, was zu einer starken Unterdrückung ihrer Beweglichkeit führt; die Manganate verwandeln sich in einen Isolator.

Wird dieser geordnete Polaronenkristall durch ein äußeres elektrisches Feld relativ zu den Gitteratomen in Bewegung gesetzt, zerfällt er nach einiger Zeit in einen ungeordneten Zustand; es entsteht die so genannte Polaronenflüssigkeit. Damit einher geht eine drastische Verringerung des elektrischen Widerstands. Durch eine extrem genau positionierbare Nanospitze im Elektronenmikroskop konnte dieser Prozess unmittelbar sichtbar gemacht werden.

Die grundlegenden Untersuchungen der Manganate sowie die Entwicklung von Anwendungen werden auf Göttinger Seite am Institut für Materialphysik in der Arbeitsgruppe "Funktionale Dünnschichten" durchgeführt.
(idw - Universität Göttingen, 24.08.2007 - DLO)
 
Printer IconShare Icon