Anzeige
Physik

Geheimnis des Glasübergangs entschlüsselt

Forscher auf dem Weg zu neuen Hochleistungsmaterialien

Im Inneren amorph: Glas © MMCD

Gläser sind Festkörper, in denen der flüssige Zustand eingefroren ist. Im Gegensatz zu kristallinen Festkörpern besitzen sie keine geordnete atomare Struktur sondern sind amorph. Auch immer mehr Metalle lassen sich in diesen Zustand bringen. Forscher sind nun hinter das Geheimnis des Glasübergangs gekommen, bei dem der Festkörper vom amorphen Zustand in den Zustand der unterkühlten Schmelze übergeht.

Wie die Wissenschafter in der amerikanischen Fachzeitschrift Proceedings of the National Academy of Sciences (PNAS) berichten, ist damit eine wichtige Voraussetzung für die Weiterentwicklung neuer Hochleistungsmaterialien geschaffen.

Einführung freier atomarer Plätze

Metallische Gläser besitzen nichtkristalline, ungeordnete Strukturen und weisen deshalb außergewöhnliche mechanische und magnetische Eigenschaften sowie hohe Korrosionsbeständigkeit auf. Der so genannte Glasübergang in diesen Festkörpern ist nun von enormer Bedeutung für die Eigenschaften dieser Materialien, die beispielsweise in der Medizintechnik, modernen Sportgeräten, oder aber auch als Hochleistungsstähle der Zukunft Anwendung finden.

Der Glasübergang, bei dem sich die mechanischen Materialeigenschaften rapide mit der Temperatur ändern, ist nach den neuen Untersuchungen der Wissenschaftler signifikant durch die Einführung freier atomarer Plätze – Leerstellen – bei höheren Temperaturen bestimmt, die bei Absenkung der Temperatur wieder verschwinden.

Messungen im Nanometerbereich

Diese neuartigen Erkenntnisse der Forscher konnten durch hochpräzise Messungen der Materialabmessungen bis in den Nanometerbereich gewonnen werden. Dazu kam die Methode der zeit-differenziellen Dilatometrie – zeitabhängige Ausdehnungsmessung bei konstanter Temperatur nach schnellen Temperaturwechseln -, die im Team von Professor Hans-Eckhardt Schaefer entwickelt wurde, zum Einsatz.

Anzeige

Die Ergebnisse sind ein wichtiger Schritt für das Verständnis amorpher Materialien wie Quarzglas, Polymere oder biologische Eiweißmaterialien und sind von herausragender Bedeutung für die Festkörper- und Materialphysik, so die Wissenschaftlern vom Institut für Theoretische und Angewandte Physik der Universität Stuttgart zusammen mit Kollegen der University of Science and Technology, Peking (China), der Technischen Universität Graz und der Universität Ulm.

(idw – Universität Stuttgart, 20.08.2007 – DLO)

Teilen:
Anzeige

In den Schlagzeilen

News des Tages

Fusionsplasma

37 Millionen Grad im Fusionsplasma

Voyager 1 sendet wieder

„Anti-Aging-Geheimnis“ der Geiseltal-Frösche gelüftet

Video: Flug über einen außerirdischen Lavasee

Diaschauen zum Thema

Dossiers zum Thema

Nanoröhrchen - Kohlenstoffwinzlinge als Bausteine für Computer der Zukunft

Glas - Ein schwer durchschaubarer Stoff

Bücher zum Thema

Welt der Elemente - von Hans-Jürgen Quadbeck- Seeger

Faszination Nanotechnologie - von Uwe Hartmann

Die Welt hinter den Dingen - von Ludwig Schultz und Hermann- Friedrich Wagner

Nanotechnologie und Nanoprozesse - Einführung, Bewertung von Wolfgang Fahrner

Projekt Zukunft - Die Megatrends in Wissenschaft und Technik von Hans-Jürgen Warnecke

Top-Clicks der Woche