• Schalter wissen.de
  • Schalter wissenschaft
  • Schalter scinexx
  • Schalter scienceblogs
  • Schalter damals
  • Schalter natur
Scinexx-Logo
Logo Fachmedien und Mittelstand
Scinexx-Claim
Facebook-Claim
Google+ Logo
Twitter-Logo
YouTube-Logo
Feedburner Logo
Freitag, 31.03.2017
Hintergrund Farbverlauf Facebook-Leiste Facebook-Leiste Facebook-Leiste
Scinexx-Logo Facebook-Leiste

Positronen spüren Defekte auf

Forscher legen Fehler in Speichermaterialien für Wasserstoff offen

Die Speicherung von Wasserstoff spielt eine besonders wichtige Rolle in neuen Konzepten für den Antrieb von Kraftfahrzeugen oder die Nutzung der Solarenenergie. Hierzu eignen sich bestimmte Metalle oder Legierungen. Ein Metall hat nie eine perfekte Kristallstruktur, sondern weist oft atomare Fehlstellen auf. Doch aus kleinen Fehlstellen können beim Beladen mit Wasserstoff größere Hohlräume entstehen. Mit Hilfe von Positronen, den Antiteilchen des Elektrons, ist es Forschern nun gelungen, derartige Defekte in Speichermaterialien aufzuspüren und genauer zu charakterisieren.
Ablösung einer dünnen Metall-Schicht

Ablösung einer dünnen Metall-Schicht

Metall-Wasserstoffspeicher werden gerade vor dem Hintergrund der aktuellen Klimadebatte als potentielle Energieträger der Zukunft gehandelt, da sowohl beim Vorgang des Beladens mit Wasserstoff als auch des Entladens keine klimaschädlichen Gase auftreten. Damit erscheinen sie für die CO2-emissionsfreie Energiespeicherung der Zukunft hervorragend geeignet. Doch ist vor einem flächendeckenden Einsatz noch viel Grundlagenforschung erforderlich. So gilt es, Wasserstoff in einem Metall gelöst zu speichern und bei Bedarf wieder freizusetzen. Dies kann durch Anlegen eines elektrischen Potentials geschehen, wie beispielsweise beim Aufladen kommerzieller Metall-Hydrid-Akkubatterien.

Defekte im Nanobereich


Die Wechselwirkung mit atomaren Gitterdefekten, die sich bereits im Speichermaterial befinden oder erst während der Beladung bilden, ist dabei nicht nur grundsätzlich von Interesse. Vielmehr spielen Defekte auch in technischer Hinsicht eine wichtige Rolle im Hinblick auf die Eigenschaften von Gebrauchslegierungen bei Anwesenheit von Wasserstoff. Sie könnten die Nutzungseigenschaften und -dauer des Metall-Wasserstoffspeichers erheblich beeinträchtigen. Die genaue Rolle solcher Defekte bei der Wasserstoffspeicherung ist trotz langjähriger Forschung in vielerlei Hinsicht noch unverstanden. Dies liegt daran, dass eine direkte Charakterisierung dieser unvorstellbar kleinen Defekte - die Größenordnung liegt im Nanometer- bis Mikrometer-Bereich - sehr schwierig ist.

Astrid Pundt von der Universität Göttingen, Jakub Cizek von der Karls-Universität in Prag und Gerhard Brauer vom Positronen-Labor des Forschungszentrums Dresden-Rossendorf (FZD), erzeugen und untersuchen systematisch dünne Metall-Schichten auf ihre jeweilige Defektstruktur. Dabei entdeckten sie unerwartet viele Defekte bei der Wasserstoffbeladung von Niob, das als potentielles Speichermaterial der Zukunft betrachtet wird. Die Wasserstoffaufnahme kann in diesem Metall zu derart hohen inneren Spannungen führen, dass sich die Schicht von ihrer Unterlage teilweise ablöst.


Wirkungsvolle Positronen


Das Beladen mit Wasserstoff kommt bei Niob sogar dem Schmelzen des Metalls gleich, denn die Defekt-Konzentrationen sind bei beiden Vorgängen ähnlich hoch. Verglichen mit der Gleichgewichts-Konzentration dieser Defekte bei Zimmertemperatur wurde somit ein Anstieg um bis zu 23 Größenordnungen gefunden. Diese Ergebnisse erregten im Juli auf dem "11. Internationalen Workshop über Positronen-Strahlen für Festkörper und Oberflächen" in Orleans/Frankreich internationales Interesse.

Als Werkzeug zur Untersuchung der unterschiedlichen Defekte setzen die Wissenschaftler Positronen, die Antiteilchen des Elektrons, ein. Das Positron ist ein Elementarteilchen der Antimaterie, das in seinen Eigenschaften exakt einem Elektron entspricht, mit dem einzigen Unterschied einer entgegengesetzt gepolten elektrischen Ladung. Beim Aufeinandertreffen von negativ geladenen Elektronen der Materie mit einem positiv geladenen Positron kommt es zur Zerstrahlung - Annihilation beziehungsweise Vernichtung - beider Teilchen, also zur Bildung von Gammastrahlen, das heißt der Umwandlung von Masse in Energie gemäß der Einstein-Relation E=mc2.

Aus diesem Vorgang können die Forscher in sehr empfindlicher Weise spezifische Informationen über den inneren Aufbau von Festkörpern entnehmen. Positronen können für die Charakterisierung eines breiten Spektrums technologisch relevanter Werkstoffe verwendet werden, wobei sich insbesondere atomar kleine Defekte wie fehlende Atome im Kristallgitter besonders gut untersuchen lassen. Deren Struktur und Konzentration bestimmen in vielen Fällen die Materialeigenschaften und sind wegen ihrer geringen Größe nur selten anderen mikroskopischen Methoden direkt zugänglich.
(idw - Forschungszentrum Dresden - Rossendorf, 17.08.2007 - DLO)
 
Printer IconShare Icon