• Schalter wissen.de
  • Schalter wissenschaft
  • Schalter scinexx
  • Schalter scienceblogs
  • Schalter damals
  • Schalter natur
Scinexx-Logo
Logo Fachmedien und Mittelstand
Scinexx-Claim
Facebook-Claim
Google+ Logo
Twitter-Logo
YouTube-Logo
Feedburner Logo
Samstag, 27.05.2017
Hintergrund Farbverlauf Facebook-Leiste Facebook-Leiste Facebook-Leiste
Scinexx-Logo Facebook-Leiste

Evolution machte Tumorwächter besser

Überraschung im Stammbaum von p53

Das Protein p53 spielt eine entscheidende Rolle bei der Unterdrückung von Tumoren. Forscher haben nun herausgefunden, dass das Eiweiß im Laufe der Evolution strukturelle Wandlungen durchgemacht hat, die vermutlich zu einer Erweiterung seiner Funktion führten. Untersuchungen der Struktur-Funktionsbeziehungen eröffnen unter anderem völlig unerwartete Möglichkeiten, die Entstehung des Hay-Wells Syndroms aufzuklären, das mit einer erheblichen Schädigung der Haut verbunden ist.
Brustkrebszelle

Brustkrebszelle

p53 überwacht die genetische Stabilität einer Zelle und hat damit eine Schlüsselrolle bei der Unterdrückung von genetischen Abweichungen, die zu Krebs führen. In mehr als der Hälfte aller Tumoren sind Mutationen in diesem Protein nachweisbar und in den restlichen Tumoren ist p53 auf andere Weise ausgeschaltet, etwa durch die erhöhte Expression natürlicher Inhibitoren.

Aufgrund dieser zentralen Bedeutung für die Krebsbekämpfung ist das Tumorsuppressorprotein in den vergangenen Jahren intensiv untersucht worden. Dabei stellte sich heraus, dass es neben p53 noch die sehr ähnliche Geschwisterproteine p63 und p73 gibt, die allerdings wahrscheinlich keine Rolle bei der Unterdrückung von Tumoren spielen.

In ihrer neuen Studie untersuchten die Wissenschaftler der Universität Frankfurt als Modelsysteme die Proteine der Fruchtfliege (Drosophila melanogaster) und des Fadenwurm (Caenorhabditis elegans). Diese niederen Organismen weisen p53-ähnliche Proteine auf, doch ihre kurze Lebenszeit stellt ihre Funktion als Tumorsuppressorproteine in Frage. In der Tat haben Untersuchungen ergeben, dass die jeweiligen Proteine hauptsächlich in den Keimbahnzellen - Eier und Spermien - der Fruchtfliege und des Fadenwurms vorhanden sind.


Bündel aus zwei Proteinen


Einen wichtigen Hinweis auf die evolutionäre Entwicklung des p53 geben die jetzt von den Forschern um Professor Volker Dötsch vom Institut für Biophysikalische Chemie mit Hilfe der kernmagnetischen Resonanzspektroskopie entdeckten strukturellen Unterschiede. So weisen die p53-ähnlichen Proteine bei C. elegans nicht die typische Bündelung aus vier gleichen Proteinen auf (Tetramerisierung), sondern sie sind zu Bündeln aus nur zwei Proteinen (Dimeren) zusammengefasst.

Eine weitere Überraschung: Die Struktur dieser dimeren Oligomerisierungsdomäne, durch die die beiden gleichen Proteinabschnitte miteinander verknüpft sind, wird durch eine enge strukturelle Verknüpfung mit einer weiteren Domäne, einer so genannten SAM-Domäne, stabilisiert. Interessanterweise existiert eine solche SAM-Domäne auch in dem menschlichen p63 Protein. Mutationen in der SAM Domäne von p63 führen in Menschen zum Hay-Wells Syndrom.

Da die Funktionsweise der SAM Domäne in p63 nicht bekannt ist und damit gegenwärtig auch kein molekularer Mechanismus für das Entstehen des Hay-Wells Syndroms existiert, stellt die Entdeckung einer SAM Domäne in dem genetisch sehr gut charakterisierbaren Wurm C. elegans einen großen Fortschritt dar.

Zelltod und Unterbrechung des Zellzyklus


Der dimere Zustand des Proteins in C. elegans legt darüber hinaus auch einen möglichen Evolutionsweg dieser wichtigen Proteinfamilie offen. Ursprünglich dimere Formen des Proteins könnten sich demnach in höheren Organismen zu Tetrameren zusammengeschlossen haben. Interessanterweise scheint damit auch eine Funktionserweiterung dieser Proteinfamilie einhergegangen zu sein. Während das dimere Wurmprotein nur den programmierten Zelltod auslösen kann, kann das menschliche, tetramere p53 sowohl zum Zelltod als auch zu einer Unterbrechung des Zellzyklus führen.

Möglicherweise ist diese zusätzliche Funktion in der Evolution erst durch die Tetramerisierung der p53 Vorläuferproteine erworben worden, so die Forscher. Diese Erkenntnis könnte auch für das Verständnis der Funktionsweise des menschlichen p53 Proteins wichtig sein, da p53 in der Zelle vermutlich auch als Dimer vorliegen kann. Damit könnte der Oligomerisierungszustand von p53 eine Rolle bei der Entscheidung spielen, ob der programmierte Zelltod oder eine Unterbrechung des Zellzyklus ausgelöst wird.
(idw - Universität Frankfurt (Main), 26.07.2007 - DLO)
 
Printer IconShare Icon