Anzeige
Physik

Molekülzerfall im Laserblick

Mit dem Röntgenlaser der Chemie des Universums auf der Spur

Links: Aufbruch der chemischen Bindung des Molekülions HeH+ durch hartes UV-Licht bei 32 nm Wellenlänge parallel (a) und senkrecht (b) zur Polarisationsrichtung der Photonen (blauer Doppelpfeil). © MPI für Kernphysik

In einem Pionierexperiment haben Forscher erstmals den Aufbruch von Molekül-Ionen durch harte UV-Strahlung abgebildet. Die Ergebnisse weisen nach, dass bisherige theoretische Modellrechungen unvollständig waren, und liefern zugleich einen experimentellen Zugang zu bestimmten chemischen Prozessen im Universum. Dies bedeutet einen erheblichen Fortschritt für die Grundlagenforschung, aber auch für angewandte Wissenschaften.

Wirkung von Röntgenstrahlung bisher nahezu unberechenbar

Während die meisten Moleküle im sichtbaren Licht intakt bleiben und sich allenfalls zu höherer chemischer Aktivität anregen lassen, lässt harte UV- oder Röntgenstrahlung sie häufig in ihre Bestandteile aufplatzen. Die Elektronen des Moleküls nehmen dabei die Energie eines Stahlungsquantums auf und es entsteht ein energiereiches instabiles Gebilde, das innerhalb kürzester Zeit zerfällt, wobei sich die Atome neu anordnen und als Bruchstücke – kleinere Moleküle oder auch Atome – wegfliegen.

Diese Prozesse sind von großer Bedeutung für chemische Reaktionsketten und -zyklen in verschiedenen Bereichen, so in interstellaren Molekülwolken oder im frühen Universum, aber auch in der hohen Atmosphäre oder in industriellen Plasmen. Molekülionen wie auch ihre Bruchstücke, beispielsweise so genannte Radikale, erweisen sich dabei oft als besonders reaktiv und ihre Wechselwirkungen mit harter UV-Strahlung sind noch kaum erforscht. Vorhersagen, wie sich die Strahlungsenergie nach ihrer Aufnahme auf die Bestandteile eines Moleküls überträgt, sind kompliziert, variieren oft von Molekül zu Molekül und ließen sich bisher kaum durch Experimente überprüfen. Somit ist man vielfach auf Modellrechnungen angewiesen, die wiederum auf Grund der Komplexität der Prozesse Näherungen beinhalten.

Den Bruchstücken auf der Spur

Ziel der Wissenschaftler vom Heidelberger Max-Planck-Institut für Kernphysik war es, den Aufbruch einzelner Moleküle im freien Raum zu beobachten und möglichst alle Bruchstücke ungestört durch die Umgebung in ihrer Bewegung und ihrem inneren Zustand zu vermessen – eine anspruchsvolle Aufgabe. Hierzu bringen die Forscher Moleküle auf hohe Geschwindigkeit, so dass sie einen scharf ausgerichteten Strahl bilden. Während des schnellen Fluges wird ihr Zerfall durch Elektronen oder energiereiche Strahlung ausgelöst. Die Bruchstücke fliegen dann in einem engen Winkelbereich nach vorn weiter, und jedes einzelne hat dabei genug Energie um auf Nachweisgeräten zuverlässig abgebildet zu werden.

Diese Fragmentabbildung mit Hochgeschwindigkeits-Molekülstrahlen ist nun für einzelne Moleküle mit harter UV-Strahlung am FLASH, dem neuen Freie Elektronen Laser am Hamburger DESY-Forschungszentrum, erstmals gelungen. Für intensive Strahlungspulse im harten UV- oder im weichen Röntgenbereich ist FLASH ist der weltweit erste Freie-Elektronen-Laser. Nach dem Laserprinzip ist die Wellenlänge seiner Strahlung genau festgelegt; zudem besitzt diese eine definierte Schwingungsrichtung (Polarisation) sowie extrem kurze Pulsdauern. Dabei ist diese Quelle um Größenordungen intensiver als alle bisher in Labors verfügbaren Laser für diesen Bereich des elektromagnetischen Spektrums.

Anzeige

FLASH zerlegt Moleküle

In den ersten Experimenten der Max-Planck-Forscher bei FLASH wurde das Molekülion HeH+ untersucht. Es ist eines der grundlegenden Moleküle und sein genaues Verständnis daher von weitreichender Bedeutung, so beispielsweise für die Chemie des frühen Universums. Auch tritt es beim Zerfall des radioaktiven Tritium-Moleküls (T2) auf, das bei Präzisionsmessungen der Neutrinomasse benutzt wird.

Der FLASH-Strahl wurde mit dem Hochgeschwindigkeits-Molekülstrahl gekreuzt und beleuchtete dann bei jedem Puls rund 25 schnelle Moleküle. Bei einer Wellenlänge von 32 Nanometern verursacht einer von rund 1.000 Laserpulsen den Zerfall eines einzigen Moleküls, dessen Bruchstücke dann nach einem Meter Flugstrecke mit ungefähr zehn Zentimeter großen Detektoren nachgewiesen wurden. Aus dem Auftreffort und der Flugzeit der Bruchstücke vom gut definierten Wechselwirkungspunkt aus kann deren Bewegung dreidimensional rekonstruiert werden, was detaillierte Informationen über jeden einzelnen Zerfallsprozess liefert. Zerbricht das Molekül entlang der Polarisation der FLASH-Photonen, welche parallel zur Flugrichtung der Moleküle gewählt wurde, so erhält man ein etwas langsameres und ein etwas schnelleres Fragment, welche nacheinander auf den Detektor auftreffen. Umgekehrt werden beim Aufbruch senkrecht zur Polarisation die Fragmente praktisch zeitgleich an verschiedenen Orten auf dem Detektor nachgewiesen.

Überraschends Ergebnis

Das Ergebnis der Messungen war überraschend: Die bisher theoretisch betrachteten Molekülzustände hätten für diesen Prozess einen Aufbruch entlang der Polarisation gezeigt. Dagegen fanden die Max-Planck-Forscher überwiegend senkrecht zur Polarisation gerichtete Fragmente, was darauf hindeutet, dass bei Modellrechungen viele der wesentlichen Molekülzustände von HeH+ für diesen Prozess bisher nicht genug Beachtung gefunden haben.

Die Messungen bei FLASH demonstrieren eine Methode, Molekülfragmentation durch energiereiche Strahlung in Einzelprozessen zu abzubilden. In Zukunft wollen die Forscher diese Prozesse auch in komplexeren Molekülen untersuchen. Die so zu gewinnenden Daten sind von weitreichender Bedeutung z.B. für die Frage der Synthese organischer Moleküle im interstellaren Raum und ihrer Überlebensfähigkeit in den Strahlungsfeldern dort. Angesichts der überraschenden Ergebnisse schon an dem einfachen System HeH+ darf man gespannt die weitere Entwicklung dieses neuen Forschungsfeldes verfolgen.

(Max-Planck-Institut für Kernphysik, 03.07.2007 – NPO)

Teilen:
Anzeige

In den Schlagzeilen

News des Tages

Diaschauen zum Thema

Dossiers zum Thema

Glas - Ein schwer durchschaubarer Stoff

Bücher zum Thema

Wissen Hoch 12 - von Harald Frater und Christina Beck

Die Welt hinter den Dingen - von Ludwig Schultz und Hermann- Friedrich Wagner

Was soll das alles? - Gedanken eines Physikers von Richard P. Feynman

Luzifers Vermächtnis - Eine physikalische Schöpfungsgeschichte von Frank Close

Top-Clicks der Woche