• Schalter wissen.de
  • Schalter wissenschaft
  • Schalter scinexx
  • Schalter scienceblogs
  • Schalter damals
  • Schalter natur
Scinexx-Logo
Logo Fachmedien und Mittelstand
Scinexx-Claim
Facebook-Claim
Google+ Logo
Twitter-Logo
YouTube-Logo
Feedburner Logo
Mittwoch, 24.05.2017
Hintergrund Farbverlauf Facebook-Leiste Facebook-Leiste Facebook-Leiste
Scinexx-Logo Facebook-Leiste

Molekulare Pirouetten

Wissenschaftler sehen Molekülen beim ultraschnellen Ausrichten zu

Eine ultraschnelle Trennung von elektrischer Ladung innerhalb eines Moleküls während einer chemischen Reaktion veranlasst bis zu zehntausend Nachbarmoleküle sich in molekularen Pirouetten neu zu orientieren und auszurichten. Dieses durch Licht hervorgerufene Phänomen haben Forscher jetzt zum ersten Mal direkt beobachtet.
Laser

Laser

Die Wissenschaftler vom Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie in Berlin und von der Ludwig-Maximilians-Universität in München berichten darüber in der aktuellen Ausgabe der Fachzeitschrift Physical Review Letters.

Für ihre Studie erzeugten sie mit extrem kurzen Lichtimpulsen eine Trennung von positiver und negativer elektrischer Ladung in einzelnen Molekülen, auf welche die Moleküle der Umgebung dann mit einer Änderung ihrer räumlichen Ausrichtung reagieren. Diesen grundlegenden Prozess erfassten die Forscher erstmals durch Beugung von Femtosekunden-Röntgenimpulsen mit hoher Präzision und in Echtzeit.

In der Natur sind chemische und biochemische Reaktionen stark durch das umgebende Medium beeinflusst, zum Beispiel ein wässriges, makromolekulares oder kristallines Milieu. Während des Reaktionsablaufs ändert sich aber die Struktur der Umgebung, die ihrerseits auf die Geschwindigkeit der Reaktion und die Stabilität der Reaktionsprodukte zurück wirkt. Derlei Prozesse laufen häufig im Zeitbereich unterhalb einer Pikosekunde ab, das heißt, sie sind kürzer als das Millionstel einer Millionstel Sekunde.


Schnappschüsse von molekularen Strukturen


Das Innere einer Vakuumkammer

Das Innere einer Vakuumkammer

Ultrakurze Röntgenimpulse bilden die Änderung von molekularen Strukturen der Umgebung während des Prozesses als eine Abfolge von "Schnappschüssen" ab. Daraus lassen sich der Abstand und die Ausrichtung der Moleküle direkt bestimmen. Um solche Röntgenblitze zu erzeugen, nutzen die Wissenschaftler aus Berlin und München Ultrakurzpulslaser. Sie untersuchten mit ihrer Methode die durch Licht hervorgerufene Trennung molekularer Ladungen, ein Prozess, wie er zum Beispiel in der Photosynthese auftritt.

Um Änderungen molekularer Abstände und Orientierungen gleichermaßen sichtbar zu machen, wählten die Wissenschaftler als Modellsystem einen Kristall, in dem 4-(Diisopropylamino)benzonitril (DIABN)-Moleküle regelmäßig angeordnet sind. Es gelang ihnen, während und nach der Ladungstrennung strukturelle Änderungen der Molekülumgebung mit einer Präzision von Bruchteilen eines Atomdurchmessers zu bestimmen.

Drehbewegungen ohne Verzögerung


So fanden sie heraus, dass die Ladungstrennung im angeregten Molekül elektrische Kräfte hervorruft, durch welche die umgebenden Moleküle je nach Abstand um einen Winkel von bis zu zehn Grad gedreht werden. Auf Grund der großen Reichweite der elektrischen Wechselwirkung nehmen für jedes angeregte Molekül ungefähr zehntausend Umgebungsmoleküle an diesem Vorgang teil. Die Drehbewegungen erfolgen ohne messbare Verzögerung zur Ladungstrennung, die im Bereich weniger Pikosekunden abläuft, und lassen den Abstand der Moleküle unverändert.

Diese mit einer bisher unerreichten Kombination höchster räumlicher und zeitlicher Auflösung erzielten Ergebnisse zeigen, dass in der Natur lokale chemische Reaktionen über elektrische Felder unmittelbar mit Strukturänderungen in einer ausgedehnten Umgebung verbunden sind. Sie ebnen darüber hinaus den Weg zur Untersuchung komplexerer Systeme bis hin zu kristallisierten biologischen Makromolekülen. Neben Laser-getriebenen Röntgenquellen werden in Zukunft auch ultrakurze Röntgenimpulse aus Freie-Elektronen-Lasern für solche Untersuchungen eingesetzt, etwa aus dem in Hamburg im Bau befindlichen XFEL.
(idw – Forschungsverbund Berlin, 13.06.2007 - DLO)
 
Printer IconShare Icon