• Schalter wissen.de
  • Schalter wissenschaft
  • Schalter scinexx
  • Schalter scienceblogs
  • Schalter damals
  • Schalter natur
Scinexx-Logo
Logo Fachmedien und Mittelstand
Scinexx-Claim
Facebook-Claim
Google+ Logo
Twitter-Logo
YouTube-Logo
Feedburner Logo
Montag, 24.07.2017
Hintergrund Farbverlauf Facebook-Leiste Facebook-Leiste Facebook-Leiste
Scinexx-Logo Facebook-Leiste

Neuer Supraleiter mit "schiefer Optik"

Magnetisches Material ohne Inversionszentrum

Wissenschafter der TU Wien haben weltweit erstmalig ein magnetisches Material gefunden, das aufgrund seiner symmetrischen Eigenschaften eigentlich nicht supraleitend sein dürfte, es aber trotzdem ist.
Supraleiter

Supraleiter

Einfache Metalle wie Aluminium, Zinn oder Materialien mit vielen elementaren Bestandteilen wie Quecksilber, Barium, Kupfer und Sauerstoff haben eines gemeinsam - sie alle sind Supraleiter. Abgesehen davon, dass Supraleiter in Zukunft noch vielseitiger einsetzbar werden als bisher - von der Material-Analyse bis hin zur Aufspürung von Herzfehlern - ist Supraleitung ein komplexes Quantenphänomen, bei dem Symmetrien eine zentrale Rolle spielen.

Wissenschafter der TU Wien rücken dieses Phänomen jetzt zurecht und verleihen ihr stark vereinfacht formuliert "eine schiefe Optik". Sie haben weltweit erstmalig ein magnetisches Material gefunden, das aufgrund seiner symmetrischen Eigenschaften eigentlich nicht supraleitend sein dürfte, es aber trotzdem ist. Die weitreichenden Folgen: das gegenwärtige Verständnis des Phänomens Supraleitung muss neu überdacht werden und die Materialentwicklung könnte neue Wege gehen.

Supraleiter - vielseitig und bedeutend


Supraleiter werden schon jetzt vielseitig eingesetzt. Sei es, um sensible Materialteile zu prüfen, wie z. B. die Flugzeugaußenhaut oder deren Nietverbindungen, Erzadern oder Ölvorkommen aufzuspüren, die für herkömmliche Sensoren unsichtbar bleiben würden. Auch lassen sich damit Herzmagnetfelder messen, um detailliertere Informationen zu gewinnen, als man sie mit üblichen Elektrokardiogrammen erhalten könnte. Es lässt sich z.B. aus solchen Magnetokardiographien eine Störung der Herzfunktion feststellen und genau eingrenzen. Ebenso kann die fokale Epilepsie eruiert werden, da diese Schädigung des Gehirns magnetische Signale erzeugt.


Jede neue Erkenntnis im Supraleitungspuzzle kann daher gezielt - vielleicht sogar lebensrettend - zur Fortentwicklung grundlegender und auch anwendungsorientierter Aspekte dieser Technologie eingesetzt werden. Das Phänomen des verschwindenden elektrischen Widerstandes in Supraleitern impliziert verlustlosen Stromtransport, der im Labormaßstab und auch in einigen Feldversuchen in Hochspannungsnetzen bereits erprobt wurde. Hier könnten große Energiesparpotentiale realisiert werden.

Zukunftsmusik ist allerdings noch die Realisierung supraleitender Quantencomputer, deren Leistungsfähigkeit heutige Supercomputer weit in den Schatten stellen wird.

... und es leitet doch!


Supraleitung ist sozusagen Entartung pur. Während die Supraleitung davon "lebt", dass die so genannte Eichsymmetrie verletzt ist, sonst wäre das Material nicht supraleitend, ist man bisher davon ausgegangen, dass hingegen räumliche Symmetrie vorhanden sein muss, um bestimmte supraleitende Zustände zu ermöglichen.

Eine Forschergruppe rund um Ernst Bauer vom Institut für Festkörperphysik der Technischen Universität Wien hat weltweit erstmalig eine Materialverbindung aus Cer, Platin und Silizium gefunden (CePt3Si), für die die räumliche Symmetrie nicht besteht, das aber trotzdem supraleitend wird. Die Forscher haben somit das erste Beispiel eines magnetischen Supraleiters gefunden, der kein Inversionszentrum besitzt, was einer Verletzung der räumlichen Symmetrie gleichkommt.

Wie funktioniert räumlich asymmetrische Supraleitung?


Cooperpaare haben keinen Gesamtimpuls (= Masse mal Geschwindigkeit). Dies bedeutet, dass nur 2 Elektronen mit gleichem Impuls aber entgegengesetzter Richtung Paare bilden können, was für entartete Zustände natürlich zutrifft. Elektronen besitzen neben ihrer Masse und einer negativen Ladung (= Elementarladung) eine weitere fundamentale Eigenschaft, den so genannten Spin. Das Pauliprinzip für Elektronen verlangt nun, dass die Gesamtwellenfunktion (die mathematische Beschreibung der Elektronenzustände) der Cooperpaare bei Vertauschung von 2 Elektronen antisymmetrisch ist.

In einfachen Supraleitern wie Aluminium kann die Cooperpaar-Wellenfunktion aufgeteilt werden in einen Anteil, der nur von räumlichen Koordinaten abhängig ist und in einen anderen, der nur vom Spin abhängt. Für Kristalle mit Inversionssymmetrie gilt daher: Ist der räumliche Teil der Wellenfunktion symmetrisch oder antisymmetrisch, so muss der Spinanteil sich gerade entgegengesetzt verhalten: er muss für den ersten Fall antisymmetrisch sein (die so genannte Spin-Singlett Paarung) und für den zweiten symmetrisch (Spin-Triplett Paarung). Da CePt3Si nicht inversionssymmetrisch ist, kann der Ortsteil weder als symmetrisch noch als antisymmetrisch beschrieben werden, das gleiche gilt für den Spinanteil. Bleibt die Gesamtwellenfunktion antisymmetrisch, müssen die Cooperpaare als Mischung von Spin-Singlet und Spin-Triplett Zuständen angesehen werden.

Rotation ohne Inversionszentrum


Im Gegensatz zu einfachen Supraleitern, in dem die Spinanordnung über die gesamte Fläche im Phasenraum gleich ist, rotiert sie für Supraleiter ohne Inversionszentrum. Die konkreten Auswirkungen eines solchen Zustandes sind noch im Wesentlichen unverstanden.

Während Cooperpaare in konventionellen Supraleitern von den Leitungselektronen gebildet werden - das sind jene Elektronen die die Eigenschaften eines Metalls wesentlich bestimmen und deren Masse gerade der Standardmasse des Elektrons entspricht - werden in CePt3Si Cooperpaare aus "schweren Elektronen" gebildet, die eine etwa 100 bis 200-fache Elektronenmasse besitzen. Dies führt unter anderem zu einer "Magnetfeldverträglichkeit", die 10 bis 100 mal größer ist (bei vergleichbarer Sprungtemperatur) als jene in Standardsupraleitern, die schon heute in vielen technischen Anwendungen eingesetzt werden.

Von einem grundlegenden Verständnis solcher neuartiger Supraleiter kann auch umfassende Einsicht in wesentliche Mechanismen der sogenannten Hochtemperatursupraleiter erwartet werden. Insbesondere gilt dies für die Frage, welche attraktive Wechselwirkung die Paarung der Elektronen bewirkt. Cooperpaarbildung erfolgt in klassischen Supraleitern (z.B. Aluminium) mit Hilfe der Gitterschwingungen des Kristalls. Dagegen werden Cooperpaare in CePt3Si höchstwahrscheinlich durch magnetische Fluktuationen bewirkt, die auch eine wesentliche Rolle für Hochtemperatursupraleiter spielen.
(idw - Technische Universität Wien, 08.04.2004 - DLO)
 
Printer IconShare Icon