• Schalter wissen.de
  • Schalter wissenschaft
  • Schalter scinexx
  • Schalter scienceblogs
  • Schalter damals
  • Schalter natur
Scinexx-Logo
Logo Fachmedien und Mittelstand
Scinexx-Claim
Facebook-Claim
Google+ Logo
Twitter-Logo
YouTube-Logo
Feedburner Logo
Freitag, 26.05.2017
Hintergrund Farbverlauf Facebook-Leiste Facebook-Leiste Facebook-Leiste
Scinexx-Logo Facebook-Leiste

Blick in Nano-Fußbälle gelungen

Forscher entwickeln neue Technik zur Untersuchung des Molekülinneren

Atome ertasten, Moleküle sehen – Rastersondenmikroskope geben seit einiger Zeit Einblick in die Welt der kleinsten Teile. Physiker haben nun eine neue Methode entwickelt, die die Elektronenlandschaft der Stoffe noch detaillierter abbildet. Mithilfe der so genannten Rasternahfeld-Elektronendurchsicht-Mikroskopie konnten sie unter anderem erstmals die Hohlräume in Nano-Fußbällen – Buckyballs, die jeweils aus 60 Kohlenstoffatomen bestehen – sichtbar machen.
Nanotechnologie

Nanotechnologie

Atome und Moleküle sind mit ihren Bruchteilen von milliardstel Metern viel zu klein für konventionelle Licht- und Elektronenmikroskope. Mit dem Rastertunnelmikroskop wird die Probe nicht mit einem schnellen Blick erfasst, sondern deren Oberfläche mit einer feinen Spitze "erfühlt". Linie um Linie fährt diese computergesteuert über das Objekt, und auf dem angeschlossenen Rechner entsteht Strich für Strich ein Bild von den Atomen.

Die Physiker Amin Bannani, Christian Bobisch und Professor Rolf Möller von der Universität Duisburg-Essen suchten jetzt nach einer Methode, die noch mehr kann. Nämlich organische Moleküle sichtbar machen und einen Blick in deren Inneres werfen. Das Team konzentrierte sich dabei auf eine besondere Untergruppe der Elektronen, so genannte ballistische Elektronen.

Das sind im Prinzip alle Fehlschüsse und Durchschüsse, die die Probe relativ ungestört passieren. Gerät ein Tunnelelektron hingegen zu sehr in den Wirkungsbereich eines Atomkerns oder der atomgebundenen Elektronen, wird es gestreut und erreicht nicht den Detektor. Bei dieser Methode kommt es darauf an, ob und wie sehr das Objekt den Elektronen "im Weg" ist. Das "wie sehr" lässt sich über verschieden hohe Spannungen herausfinden, die den Messelektronen gewissermaßen mehr oder weniger Schwung verleihen. Mit wenig Startenergie gerät ein getunneltes Elektron bereits in Randbereichen der Moleküle auf Abwege, während es mit einem energischeren Start selbst in den "weicheren" Molekülzonen kaum gestreut wird. Die zusätzliche Abbildung zeigt dann Kanäle auf, wo die Elektronen besonders gut durch die Probe transportiert werden.


Fußbälle und Hundeknochen unter der „Lupe“


Die Qualität ihrer neuen Rasternahfeld-Elektronendurchsicht-Mikroskopie (scanning near-field electron transmission microscopy) – über die sie in der Wissenschaftszeitschrift Science berichten - haben die Forscher an zwei unterschiedlichen Molekülen erprobt: fußballförmigen Buckyballs aus je 60 Kohlenstoffatomen und dem komplexeren 3,4,9,10-Perylen-Tetracarboxylsäuredianhydrid (PTCDA), das recht flächig ist und dessen Form an einen Hundeknochen erinnert. Von beiden Verbindungen erhielten sie mindestens ebenso gute Bilder wie mit einem gewöhnlichen Rastertunnelmikroskop.

Besonders beim Buckyball machte sich aber der Vorteil der ballistischen Elektronen bemerkbar. Mit höheren Spannungen trat immer besser der Hohlraum im Zentrum der kleinen Kugeln hervor - eine Struktur, die niemals zuvor mit einem Mikroskop gesehen wurde.
(idw - Universität Duisburg-Essen, 02.04.2007 - DLO)
 
Printer IconShare Icon