• Schalter wissen.de
  • Schalter wissenschaft
  • Schalter scinexx
  • Schalter scienceblogs
  • Schalter damals
  • Schalter natur
Scinexx-Logo
Logo Fachmedien und Mittelstand
Scinexx-Claim
Facebook-Claim
Google+ Logo
Twitter-Logo
YouTube-Logo
Feedburner Logo
Donnerstag, 23.03.2017
Hintergrund Farbverlauf Facebook-Leiste Facebook-Leiste Facebook-Leiste
Scinexx-Logo Facebook-Leiste

Nichtleiter als Speicher?

Magnetische Eigenschaften von Nichtleitern auf atomarer Ebene erforscht

Egal ob auf Festplatten, im Telefon oder in der Medizintechnik – zur Datenspeicherung kommen häufig magnetische Medien zum Einsatz. Um deren Miniaturisierung weiter voranzutreiben, erforschen Wissenschaftler seit einigen Jahren sogar die magnetischen Informationen einzelner Atome. Bislang gelang dies jedoch nur bei elektrisch leitfähigen Materialien. Nun berichtet ein deutscher Wissenschaftler in „Nature“ erstmals über eine Methode, die magnetischen Eigenschaften auch von nichtleitenden Nickeloxid-Atomen abzubilden. Dies könnte für die Konstruktion zukünftiger Speichermedien enorm wichtig sein.
Magnetische Austauschkraftmikroskopie

Magnetische Austauschkraftmikroskopie

Anwendungen auf Basis des Magnetismus sind aus unserer heutigen Welt nicht mehr wegzudenken. Der Magnetismus bildet die unverzichtbare Grundlage für Sensoren im Auto, Computerfestplatten zur Datenspeicherung, das Telefon, das Fernsehen und die Magnetspinresonanz in der Medizin. Die Informationsverarbeitung und Datenspeichertechnologie sind dabei die Triebfedern der aktuellen Magnetismusforschung, denn die rasante Entwicklung der Computertechnik in den letzten Jahren verlangt nach Speichermedien mit immer höherer Datenkapazität.

Notwendige Miniaturisierung


Um auf gleichem oder sogar kleinerem Raum mehr Informationen zu speichern, müssen die magnetischen Elemente der Speichermedien immer kleiner und kleiner werden, bis sie nur noch einzelne Atome groß sind. Aus diesem Grund wird die Untersuchung der magnetischen Eigenschaften einzelner Atome für die magnetische Datenspeichertechnik immer interessanter, denn wenn es gelänge einen Datenträger zu entwickeln, auf dem digitale Informationen Bit für Bit in benachbarte Einzelatome gespeichert werden können, wäre es möglich, die gesamte Literatur der Menschheit auf der Größe einer Briefmarke zu archivieren.

Im Jahr 2000 gelang es Hamburger Wissenschaftlern zum ersten Mal mit Hilfe der Spinpolarisierten Rastertunnelmikroskopie, die magnetische Information einzelner Atome auszulesen. Diese Methode ist ein gewaltiger Schritt in der Erforschung des Magnetismus, hat jedoch einen entschiedenen Nachteil: Es können mit der Spinpolarisierten Rastertunnelmikroskopie nur elektrisch leitfähige Materialien untersucht werden, viele nichtleitende, aber trotzdem magnetische Substanzen konnten bisher nicht auf atomarer Skala untersucht werden. Dabei scheinen aber gerade nichtleitende magnetische Substanzen für die Konstruktion zukünftiger Speichermedien enorm wichtig zu sein.


Nichtleiter erstmals abgebildet


Wie die Zeitschrift "Nature" diese Woche berichtet, gelang es Diplom- Physiker Uwe Kaiser, Dr. Alexander Schwarz und Prof. Roland Wiesendanger von der Universität Hamburg weltweit erstmalig dieses Problem zu lösen und die magnetischen Eigenschaften einzelner Nickeloxid-Atome abzubilden. Dazu benutzten sie ein selbst entwickeltes Rasterkraftmikroskop mit einer magnetischen Spitze: ein Magnetisches Austauschkraftmikroskop, mit dem Ferromagnete, Ferrimagnete, magnetische Einzelatome oder magnetische Moleküle unabhängig von ihrer Leitfähigkeit Atom für Atom untersucht werden können.

Die Idee zur magnetischen Austauschkraftmikroskopie existiert schon seit Anfang der neunziger Jahre. Allerdings ist die moderne Messtechnik erst jetzt in der Lage, die unglaublich geringen magnetischen Wechselwirkungen zwischen einzelnen Atomen reproduzierbar zu messen. Weltweit gibt es bisher nur sehr wenige Rasterkraftmikroskope, die so gut konstruiert sind und bei tiefen Temperaturen von -270°C arbeiten, um die notwendige Stabilität, hohe Auflösung und Kraftsensitivität zu erreichen, wie das, an dem die Hamburger Wissenschaftler forschen.

Mit dieser hochauflösenden, magnetisch-sensitiven Messtechnik wurde die Grundlage zur Weiterentwicklung von Bauelementen in der Datenspeichertechnologie und Sensorik auf der Nanometerskala geschaffen, und es eröffnen sich damit viele neue Möglichkeiten für industrienahe Anwendungen. Allerdings sind noch eine ganze Reihe instrumenteller Fortschritte notwendig, damit die magnetische Austauschkraftmikroskopie auch auf kommerziell erhältlichen Rasterkraftmikroskopen erfolgreich betrieben werden kann.
(idw - Kompetenzzentrum Nanoanalytik, 30.03.2007 - AHE)
 
Printer IconShare Icon