• Schalter wissen.de
  • Schalter wissenschaft
  • Schalter scinexx
  • Schalter scienceblogs
  • Schalter damals
  • Schalter natur
Scinexx-Logo
Logo Fachmedien und Mittelstand
Scinexx-Claim
Facebook-Claim
Google+ Logo
Twitter-Logo
YouTube-Logo
Feedburner Logo
Dienstag, 25.07.2017
Hintergrund Farbverlauf Facebook-Leiste Facebook-Leiste Facebook-Leiste
Scinexx-Logo Facebook-Leiste

Schon bald künstliche Photosynthese?

Chemiker wollen CO2 als Kohlenstoffquelle für Synthesen nutzen

Pflanzen können es: Einfach Kohlendioxid aus der Luft aufnehmen und in Biomasse umwandeln. Für die Photosynthese nutzen sie Licht als Energiequelle. Chemiker würden auch gerne einfach CO2 als Kohlenstoffquelle für ihre Synthesen nutzen, aber das klappt nicht so ohne weiteres. Einem Team um Markus Antonietti vom Max-Planck-Institut für Kolloid- und Grenzflächenforschung in Potsdam ist nun ein entscheidender Schritt auf diesem Weg geglückt.
Blatt: Ort der Photosynthese

Blatt: Ort der Photosynthese

Wie die Forscher in der Zeitschrift Angewandte Chemie beschreiben, ist es ihnen gelungen, CO2 mithilfe einer speziellen neuen metallfreien Katalysatorklasse, einem graphitischen Kohlenstoffnitrid, so zu aktivieren, dass es für eine chemische Reaktion zugänglich wird.

Metallkatalysatoren können C-O-Bindungen spalten


"Die chemische Aktivierung von Kohlendioxid, das heißt dessen Spaltung in einer chemischen Reaktion", führen die Chemiker um Antonietti aus, "ist eine der größten Herausforderungen der Synthesechemie." Die Bindungen innerhalb des Moleküls sind sehr stabil, es ist eine sehr hohe Energie nötig, um sie zu spalten. Bisher sind nur sehr spezielle Metallkatalysatoren bekannt, die die C-O-Bindungen im CO2 spalten können.

Im Gegensatz zu den meisten bisherigen Ansätzen arbeitete das Team mit metallfreien Katalysatoren und orientierte sich dabei an Pflanzen: Die Photosynthese in Grünpflanzen verläuft über eine wichtige Zwischenstufe, die Bindung des CO2 an Stickstoffatome in Form so genannter Carbamate. Und so experimentierten auch die deutschen Wissenschaftler mit stickstoffreichen Katalysatoren, die so aufgebaut sind, dass sie Carbamate bilden können. Ihre neue Katalysatorklasse ist aus flachen, graphitartigen Schichten aufgebaut.


Temperaturstabil und chemisch aktiv


Die einzelnen Schichten bestehen aus Ringsystemen von Kohlenstoff- und Stickstoffatomen. Das als graphitisches Kohlenstoffnitrid bezeichnete Material ist sehr temperaturstabil, chemisch sehr aktiv, aber so stabil, dass es sich fast immer zurückbildet: ein idealer Katalysator also. Selbst Kohlendioxid lässt sich damit aktivieren. So gelang es, Benzol (ein aromatischer Kohlenstoffsechsring) zu Phenol (trägt eine zusätzliche OH-Gruppe) zu oxidieren. Gleichzeitig entsteht Kohlenmonoxid (CO), das direkt für chemische Synthesen verwendet werden kann.

Rein formal gesehen wird bei der Reaktion CO2 in ein Sauerstoff-Diradikal und CO gespalten. Die Reaktion scheint aber wie die Photosynthese über Carbamate zu laufen: Im ersten Schritt bindet CO2 an einzeln vorhandene freie Aminogruppen des Kohlenstoffnitrids, oxidiert dann Benzol zu Phenol, und am Ende spaltet sich das verbliebene CO vom Katalysator ab. "So könnte eine neuartige, bisher unbekannte CO2-Chemie zugänglich werden", hofft Antonietti. "Vielleicht ist dies sogar der erste Schritt in Richtung einer künstlichen Photosynthese."
(idw - Gesellschaft Deutscher Chemiker, 15.03.2007 - DLO)
 
Printer IconShare Icon