• Schalter wissen.de
  • Schalter wissenschaft
  • Schalter scinexx
  • Schalter scienceblogs
  • Schalter damals
  • Schalter natur
Scinexx-Logo
Logo Fachmedien und Mittelstand
Scinexx-Claim
Facebook-Claim
Google+ Logo
Twitter-Logo
YouTube-Logo
Feedburner Logo
Dienstag, 12.12.2017
Hintergrund Farbverlauf Facebook-Leiste Facebook-Leiste Facebook-Leiste
Scinexx-Logo Facebook-Leiste

Gestörtes Protein-Teamwork schuld an gefährlicher Augenkrankheit

Forscher entdecken Ursache für Retinitis pigmentosa

Etwa 30.000 Menschen in Deutschland leiden an der Retinitis pigmentosa, einer Erbkrankheit, bei der sich die Augennetzhaut allmählich verändert - bis die Betroffenen schließlich erblinden. Wissenschaftler haben die Krankheit jetzt in der Fachzeitschrift Molecular Cell mit einem wichtigen molekularen Mechanismus in Verbindung gebracht: Bei den Patienten können bestimmte Proteinmoleküle so in ihrer Struktur verändert sein, dass sie nicht mehr zu anderen Proteinen passen und damit wichtige zelluläre Funktionen nicht mehr wahrnehmen können.
Sensor Auge

Sensor Auge

Retinitis pigmentosa bezeichnet eine Gruppe vererbbarer Krankheiten, die durch eine langsame und fortschreitende Zerstörung des Netzhautgewebes im Auge charakterisiert sind. Die Erkrankungen führen im fortgeschrittenen Stadium faktisch zur Erblindung. Das Krankheitsbild tritt im Durchschnitt bei einer von etwa 2.500 Personen auf und ist damit eine der häufigsten Ursachen für den Verlust der Sehfähigkeit. Zurzeit gibt es weder chirurgische noch medikamentöse Behandlungsmethoden.

Neuere Untersuchungen haben jetzt gezeigt, dass die Krankheit mit Defekten in einem zentralen zellulären Vorgang zusammenhängt, dem so genannten "prä-mRNA-Spleißen". In höheren Organismen ist die Mehrzahl der Gene auf der DNA im Zellkern mosaikartig verteilt: Zwischen wichtigen Genabschnitten, die für bestimmte Proteinbereiche kodieren ("Exons"), liegen Abschnitte, die keine Protein-kodierende Information tragen ("Introns"). Daher müssen aus einer "prä-mRNA", der ersten Abschrift eines Gens, die im Zellkern angefertigt wird, die Introns herausgeschnitten und im gleichen Zuge die Exons zu einer kontinuierlichen, "reifen" mRNA zusammengefügt werden - ein molekularer Prozess, den man als "Spleißen" bezeichnet. Diese reife mRNA kann dann aus dem Zellkern ausgeschleust und im Zytoplasma der Zelle als Bauanleitung für die Produktion von Proteinen verwendet werden.

Komplexe molekulare Maschinerie im Einsatz


Das prä-mRNA-Spleißen wird von einer komplexen molekularen Maschinerie, dem Spleißosom, bewerkstelligt, das aus weit über 100 verschiedenen Protein- und RNA-Molekülen zusammengesetzt ist. Gerade bei Patienten mit verschiedenen Formen von Retinitis pigmentosa sind nun in einer Reihe von Proteinbestandteilen des Spleißosoms Mutationen, d.h. Veränderungen in der Abfolge der Aminosäurebausteine, gefunden worden.


Das größte Protein im Spleißosom ist das so genannte Prp8. Prp8 unterhält Kontakte mit vielen anderen funktionell wichtigen Proteinen und RNA-Molekülen der Spleißmaschinerie und wird daher als eine Art Fundament des Spleißosoms angesehen. Bei einer besonders aggressiven Form der Retinitis pigmentosa, die als RP13 bezeichnet wird, finden sich eine Reihe von Punktmutationen, also Veränderungen einzelner Aminosäuren, in einer kurzen Region an einem Ende des Prp8-Proteins.

In einem gemeinsamen Forschungsprojekt konnten Wissenschaftler um Markus Wahl und Professor Reinhard Lührmann vom Max-Planck-Institut für biophysikalische Chemie nun die atomare, dreidimensionale Struktur von diesem Teil des Prp8-Proteins mit dem Verfahren der Röntgenkristallographie aufklären. Zu diesem Zweck wurde zunächst ein Bakterienstamm gentechnisch so verändert, dass er große Mengen des Proteins hergestellt hat. Aus diesem Material züchteten die Wissenschaftler dann Kristalle, in denen die Moleküle in allen drei Raumrichtungen regelmäßig angeordnet sind. Diese Kristalle erzeugen bei Bestrahlung mit Röntgenlicht ein Beugungsbild, aus dem sich die exakte Anordnung der Atome im Kristall berechnen lässt.

Andocken unterbunden


Die atomare Struktur des Proteins zeigte, dass alle Aminosäuren, die bei Patienten mit der RP13-Form von Retinitis pigmentosa verändert sind, in einem ausgedehnten Fortsatz am Ende von Prp8 liegen. Mit einem weiteren gentechnischen Verfahren testeten die Wissenschaftler die Funktion dieses Fortsatzes. Wenn dieser Proteinbereich komplett entfernt wurde, war das Andocken von zwei anderen Proteinen des Spleißosoms an den untersuchten Teil von Prp8 unterbunden. Auch wenn einzelne Aminosäuren in einer Art und Weise verändert wurden, wie es bei Retinitis pigmentosa-Patienten zu beobachten ist, stellten die Forscher eine Abschwächung dieser Protein-Protein-Interaktionen fest. Diese Ergebnisse belegen, dass der Fortsatz am Ende von Prp8 als Bindestelle für andere Bausteine des Spleißosoms dient, vergleichbar mit einer Wäscheleine, an der mehrere Kleidungsstücke aufgehängt werden können. Wenn diese Aufhängevorrichtung wie im Falle von RP13-Patienten defekt ist, ist zu erwarten, dass die Spleißmaschine nicht reibungslos funktioniert und letztendlich die Produktion eines netzhautspezifischen Proteins gestört sein könnte.

Aufgrund der Ergebnisse vermuten die Wissenschaftler, dass das Krankheitsbild der Retinitis pigmentosa mit Störungen im Wechselspiel zwischen Proteinmolekülen in Zusammenhang steht, die in der Folge zu Fehlfunktionen bei zentralen zellulären Abläufen führen können. Mit diesen Befunden hält man noch keinen Schlüssel zu einer Therapie in der Hand. Es ist aber zu erwarten, dass derartige grundlagenwissenschaftliche Erkenntnisse in der Zukunft zu Ideen für eine Heilmethode beitragen.
(idw - Max-Planck-Institut für biophysikalische Chemie, 02.03.2007 - DLO)
 
Printer IconShare Icon