• Schalter wissen.de
  • Schalter wissenschaft
  • Schalter scinexx
  • Schalter scienceblogs
  • Schalter damals
  • Schalter natur
Scinexx-Logo
Logo Fachmedien und Mittelstand
Scinexx-Claim
Facebook-Claim
Google+ Logo
Twitter-Logo
YouTube-Logo
Feedburner Logo
Dienstag, 28.03.2017
Hintergrund Farbverlauf Facebook-Leiste Facebook-Leiste Facebook-Leiste
Scinexx-Logo Facebook-Leiste

Gehirn arbeitet chaotischer als angenommen

Studie: Weiterleitung der Informationen nicht nur an Synapsen

Das Gehirn verarbeitet Informationen augenscheinlich chaotischer als bislang angenommen. Das haben Wissenschaftler der Universität Bonn in einer neuen Studie gezeigt. Die Weiterleitung der Informationen von Neuron zu Neuron erfolgt demnach nicht ausschließlich an den so genannten Synapsen - das sind die Kontaktstellen zwischen den Nervenzell-Fortsätzen. Anscheinend schütten die Neuronen auch auf der ganzen Länge dieser Fortsätze Botenstoffe aus und erregen so benachbarte Zellen.
Forschungslandschaft Gehirn

Forschungslandschaft Gehirn

Die Ergebnisse werfen nicht nur grundlegende Vorstellungen über den Haufen, wie unser Gehirn funktioniert. Sie könnten auch zur Entwicklung neuer Medikamente beitragen, so die Forscher in der Online-Ausgabe der Fachzeitschrift Nature Neuroscience.

Bisher schien alles ganz klar: Nervenzellen empfangen ihre Signale mit kurzen "Zellärmchen", den so genannten Dendriten. Diese leiten die elektrischen Impulse zum Zellkörper, wo sie verarbeitet werden. Für die "Verteilung" des Resultats sind die Axone zuständig: Das sind lange kabelartige Zellausläufer, in denen die elektrischen Signale entlanglaufen, bis sie an einer Synapse auf das Dendrit-Ärmchen eines anderen Neurons treffen. Für die elektrischen Nervenzellpulse stellt die Synapse eine unüberwindbare Barriere dar. Daher kommt es dort zu einer wundersamen Signal-Umwandlung: Die Synapse schüttet Botenstoffe aus, so genannte Neurotransmitter, die zum Dendriten diffundieren.

Dort docken sie an bestimmte Rezeptoren an und erzeugen so wieder elektrische Impulse. "Bisher nahm man an, dass nur an Synapsen Neurotransmitter ausgeschüttet werden", betont der Bonner Wissenschaftler Dr. Dirk Dietrich. "Das scheint nach unseren Erkenntnissen aber nicht zu stimmen."


Botenstoff lockt Isolierzellen an


Zusammen mit seinen Kolleginnen Dr. Maria Kukley und Dr. Estibaliz Capetillo-Zarate hat Dietrich die "weiße Substanz" im Gehirn von Ratten genauer untersucht. Hier liegen die "Kabelschächte", die rechte und linke Hirnhälfte miteinander verbinden. Sie bestehen im wesentlichen aus Axonen und Hilfszellen. Dendriten oder gar Synapsen gibt es dort keine. "Man würde dort also auch keine Botenstoff- Freisetzung erwarten", betont der Hirnforscher.

Dennoch machten die Wissenschaftler in der weißen Substanz eine merkwürdige Entdeckung: Sobald ein elektrischer Impuls durch ein Axon-Kabel läuft, wandern kleine Bläschen mit Glutamat zur Axon-Membran und entlassen ihren Inhalt ins Gehirn. Glutamat ist einer der wichtigsten Neurotransmitter und wird auch bei der Signalweiterleitung an Synapsen ausgeschüttet. Die Forscher konnten sogar nachweisen, dass bestimmte Zellen in der weißen Substanz auf das Glutamat reagierten: Die Vorläufer der so genannten Oligodendrozyten.

Oligodendrozyten sind die "Isolierzellen" des Gehirns: Sie produzieren das Myelin, eine Art Fettschicht, die die Axone umhüllt und für eine schnellere Signalweiterleitung sorgt. "Wahrscheinlich orientieren sich noch unreife Isolierzellen mit Hilfe des Glutamats, um Axone zu finden und sie mit einer Myelinschicht zu umhüllen", vermutet Dietrich.

Dogma zur Kommunikation von Neuronen gerät ins Wanken


Sobald die Axone den weißen "Kabelschacht" verlassen, treten sie in die graue Gehirnsubstanz ein und treffen dort auf ihre Empfänger-Dendriten. Dort erfolgt an den Synapsen die Weitergabe der Information an die Empfängerzelle. "Wir halten es jedoch für wahrscheinlich, dass die Axone auch außerhalb von Synapsen auf ihrem Weg durch die graue Substanz Glutamat freisetzen", spekuliert Dietrich. "Hier liegen Nervenzellen und Dendriten dicht an dicht. Das Axon könnte so also nicht nur den eigentlichen Empfänger, sondern auch noch zahlreiche weitere Nervenzellen erregen."

Sollte diese These stimmen, muss die seit über hundert Jahren gültige Lehrmeinung zur Kommunikation von Neuronen revidiert werden. 1897 prägte Sir Charles Sherrington die Idee, dass nur an den Synapsen Botenstoffe freigesetzt werden. Laut dem Begründer der modernen Neurophysiologie können Nervenzellen daher nur mit wenigen Nervenzellen kommunizieren: nämlich nur mit denjenigen, mit denen sie über Synapsen verbunden sind. Auf diesem Konzept beruht die Vorstellung, dass sich neuronale Information im Gehirn ähnlich wie Strom in einem Computer gerichtet und nur entlang bestimmter geordneter Schaltkreisen ausbreitet.

Zuviel Glutamat ist der Zellen Tod


Die Entdeckung des Forscherteams hat aber noch einen medizinisch interessanten Aspekt: Es ist schon lange bekannt, dass bei Sauerstoffmangel oder heftigen epileptischen Anfällen zahlreiche Isolierzellen in der weißen Substanz zugrunde gehen. Auslöser der Schäden ist ein alter Bekannter: Der Neurotransmitter Glutamat.

"Niemand wusste bislang jedoch, wo das Glutamat herkommt", sagt Dietrich. "Unsere Ergebnisse eröffnen vielleicht völlig neue Therapieoptionen." Denn schon heute gibt es Medikamente, die verhindern, dass Glutamatbläschen ihre Fracht ins Gehirn abgeben. Auch wissen die Bonner Neurowissenschaftler inzwischen genau, welche Rezeptoren der Isolierzellen der Neurotransmitter stimuliert - ebenfalls ein Ansatzpunkt für neue Arzneien.

Doch warum ist Glutamat mitunter so gefährlich? Bei einem Epilepsie- Anfall "feuern" die Nervenzellen sehr schnell und heftig. Dann laufen so viele Impulse durch die Axone, dass auf einen Schlag große Mengen Glutamat frei werden. "In diesen Konzentrationen schädigt der Botenstoff die Isolierzellen", sagt Dietrich. "Die Dosis macht das Gift."
(idw - Universität Bonn, 28.02.2007 - DLO)
 
Printer IconShare Icon