• Schalter wissen.de
  • Schalter wissenschaft
  • Schalter scinexx
  • Schalter scienceblogs
  • Schalter damals
  • Schalter natur
Scinexx-Logo
Logo Fachmedien und Mittelstand
Scinexx-Claim
Facebook-Claim
Google+ Logo
Twitter-Logo
YouTube-Logo
Feedburner Logo
Montag, 24.07.2017
Hintergrund Farbverlauf Facebook-Leiste Facebook-Leiste Facebook-Leiste
Scinexx-Logo Facebook-Leiste

Doppelte „Magie“ der superschweren Kerne

Radiochemiker synthetisieren erstmals Hassium-270

Einer internationalen Wissenschaftlerkollaboration ist es erstmals gelungen, vier Atome des Kerns Hassium-270 zu synthetisieren und nachzuweisen. Dieses, jetzt in der Zeitschrift „hysical Review Letters“ veröffentlichte Experiment belegt, dass der Weg zu superschweren Elementen über eine näher gelegene, durch so genannte Schaleneffekte stabilisierte Region führt. Auch Chemikern steht somit die Erforschung aller bisher nur mit physikalischen Methoden nachgewiesenen Elemente im Periodensystem offen.
Uran - ein radioaktives Element

Uran - ein radioaktives Element

Das schwerste in größeren Mengen in der Natur vorkommende Element ist Uran mit der Ordnungszahl 92. Forscher fragen jedoch: Wie schwer kann ein Kern werden, ohne spontan in zwei Fragmente zu zerfallen? Und gibt es nicht doch weitaus schwerere Elemente, die sich eventuell sogar in der Natur nachweisen lassen? In den letzten Jahrzehnten konnten Wissenschaftler an Beschleunigern wenige Atome bis hin zum Element 118 künstlich synthetisieren, indem sie leichtere Elemente fusionierten.

„Magische Zahlen“ machne Elemente stabil


Die schwersten so hergestellten Elemente sind jedoch alle radioaktiv und bestehen jeweils nur für kurze Zeit. Ihre Existenz verdanken sie dem sogenannten Schaleneffekt: "Magische" Zahlen von Protonen und Neutronen sind in der Lage, einen Kern zusätzlich zu stabilisieren. Kerne, die sowohl eine magische Protonenzahl als auch eine magische Neutronenzahl enthalten, sind "doppelt magisch".

Der schwerste bekannte doppelt magische Kern ist Blei mit der Massenzahl 208. Bereits in den 1960-er Jahren wurde auf Basis des Schalenmodells des Kerns vorhergesagt, es müsse eine Insel der superschweren Elemente geben. Zentrum dieser Insel sollte ein sphärischer, doppelt magischer Kern mit der Ordnungszahl 114 und der Neutronenzahl 184 sein. Anzeichen für die tatsächliche Existenz dieser Region erhöhter Stabilität sind Berichte über eine Serie von Experimenten des Flerov-Labors im russischen Dubna, in denen die Synthese der Elemente 112 bis 118 geglückt sein soll.


Neue „Insel der Stabilität“aufgetaucht


Neueste theoretische Berechnungen haben nun gezeigt, dass auch deformierte Kerne doppelt magische Schalenabschlüsse bilden können; der nächste Schalenabschluss ist deshalb bereits beim Kern Hassium-270 mit der Ordnungszahl 108 und der Neutronenzahl 162 zu erwarten. Das Auftauchen einer weiteren Insel aus dem "Meer der Instabilität" hat das Bild einer einzigen weit draußen liegenden Insel der superschweren Elemente erheblich modifiziert.

Hassium-Synthese gelungen


Wissenschaftlern des Instituts für Radiochemie der TU München in Garching und der Gesellschaft für Schwerionenforschung in Darmstadt,gelang die Synthese des Hassium-270, indem sie ein dünnes Target aus Curium-248 mit einem Strahl von Magnesium-26-Ionen über einen Zeitraum von mehreren Wochen intensiv beschossen. Die beiden Atome verschmolzen zum Element Hassium. Um die äußerst selten entstehenden Hassiumatome nachzuweisen, bedienten sich die Forscher eines kontinuierlich arbeitenden chemischen Separationssytems.

Da Hassium zur Gruppe 8 des Periodensystems gehört, so wie Osmium, verbindet es sich sehr leicht mit vier Sauerstoffatomen zu einem sehr flüchtigen gasförmigen Molekül. Durch eine kontinuierliche und sehr schnelle gaschromatographische Trennung und eine anschließende Abscheidung in einem Kryodetektor ließ sich der radioaktive Zerfall der synthetisierten Hassiumatome höchst effizient nachweisen. Dabei beobachteten die Forscher, dass Hassium-270 nicht etwa spontan in zwei Bruchstücke zerfällt, sondern erst nach einer gewissen Lebensdauer einen Heliumkern emittiert.

Halbwertszeit: eine halbe Minute


Aus der gemessenen Zerfallsenergie - die sehr gut mit theoretisch vorhergesagten Werten übereinstimmte - konnte auch eine Halbwertszeit des Hassium-270 von immerhin einer halben Minute abgeleitet werden. Durch die Emission eines Heliumkerns verwandelt sich das Hassium-270 in ein leichteres Nuklid: Seaborgium-266. Dieses zerfällt mit einer Halbwertszeit von etwa einer halben Sekunde spontan in zwei Fragmente - wiederum ein Hinweis auf die außerordentliche Stabilität des Hassium-270.
(Technische Universität München, 18.12.2006 - NPO)
 
Printer IconShare Icon