• Schalter wissen.de
  • Schalter wissenschaft
  • Schalter scinexx
  • Schalter scienceblogs
  • Schalter damals
  • Schalter natur
Scinexx-Logo
Logo Fachmedien und Mittelstand
Scinexx-Claim
Facebook-Claim
Google+ Logo
Twitter-Logo
YouTube-Logo
Feedburner Logo
Samstag, 21.10.2017
Hintergrund Farbverlauf Facebook-Leiste Facebook-Leiste Facebook-Leiste
Scinexx-Logo Facebook-Leiste

Galaktischer „Maschinenraum“ erforscht

Variable Emission hochenergetischer Strahlung einer riesigen Radiogalaxie nachgewiesen

Die Radiogalaxie M87 sendet Gamma-Strahlung aus, die eine Million mal eine Million mal energiereicher sind als das sichtbare Licht. Besonders überraschend ist, dass sich die Intensität dieser Strahlung innerhalb von nur wenigen Tagen drastisch ändern kann. Dies lässt sich nur dadurch erklären, dass die Quellregion der hochenergetischen Gamma-Strahlung ungewöhnlich kompakt ist. Als einzige dafür in Frage kommende Region ist die unmittelbare Umgebung des supermassiven Schwarzen Lochs im Zentrum von M87, wie Forscher nun in der Online Ausgabe von Science berichten.
Radiogalaxie M87

Radiogalaxie M87

Im Zentrum vieler Galaxien vermuten Wissenschaftler heute ein massives Schwarzes Loch mit einer Masse, die Millionen bis Milliarden Sonnenmassen erreichen kann. Wenn dieses Schwarze Loch die umgebende Materie ansaugt, so können sich Materieströme relativistischer Teilchen ausbilden, die sich mit annähernder Lichtgeschwindigkeit bewegen. Man spricht dann von einer „aktiven Galaxie“. Zeigt ein solcher Materiestrom auf die Erde, so nennt man die entsprechende Galaxie einen Blazar. Blazare sind die einzigen aktiven Galaxien, von denen bisher hochenergetische Gamma-Strahlung nachgewiesen wurde - mit der bislang einzigen Ausnahme der viel näher gelegenen Radiogalaxie M87.

Häufige Wechsel der Gammastrahlen-Intensität


Das H.E.S.S.-Team, eine internationale zusammengesetzte Forschergruppe von Astrophysikern und Teilchenphysikern, berichtet nun über die Entdeckung hochenergetischer Gamma-Strahlung aus der Radiogalaxie M87. Die Forschergruppe betreibt in Namibia ein System aus vier so genannten Cherenkov-Teleskopen, mit dem sie die Gamma-Strahlung der nahegelegenen Radiogalaxie M87 in den letzten vier Jahren gemessen haben. Das überraschende Ergebnis dabei ist, dass sich die Intensität dieser Strahlung zum Teil innerhalb von nur wenigen Tagen drastisch ändert.

Die Radiogalaxie M87 befindet sich im Virgo-Galaxienhaufen, 50 Millionen Lichtjahre von der Erde entfernt. Das Zentrum von M87 beherbergt ein supermassives Schwarzes Loch mit einer Masse von drei Milliarden Sonnenmassen. Aus dem zentralen Bereich von M87 tritt ein relativistischer Plasmastrom aus, ein so genannter Jet, der in optischen, Radio- und Röntgen-Aufnahmen sichtbar ist. Im Gegensatz zu den bislang nachgewiesenen extragalaktischen Quellen sehr hochenergetischer Gamma-Strahlung (Blazare) zeigt der Plasmastrom von M87 aber nicht direkt auf die Erde, sondern weist mit einem Winkel von 30 Grad an ihr vorbei. Die aus Blazaren nachgewiesene Gamma-Strahlung wird vermutlich in den Plasmaströmen erzeugt, wobei die Intensität und Energie der Strahlung aufgrund der hohen Geschwindigkeit des Plasmastroms in Richtung des Stroms gebündelt und verstärkt wird. Solch gebündelte Strahlung aus dem Jet in M87 würde aber die Erde gar nicht treffen. M87 stellt daher vermutlich einen ganz neuen Typ extragalaktischer Quellen von hochenergetischer Strahlung dar.


Quellregion nicht größer als unser Sonnensystem


Die von H.E.S.S. gemessene Variabilitäts-Zeitskala der hochenergetischen Strahlung von M87 ist mit wenigen Tagen sehr kurz - kürzer als in jedem anderen Wellenlängenbereich. Die Quellregion der hochenergetischen Strahlung kann demnach nur etwa so groß sein wie unser Sonnensystem (nur etwa 0,000001 Prozent der Größe der gesamten Radiogalaxie M87). „Dies ist nicht viel größer als der Ereignishorizont des supermassiven Schwarzen Lochs im Zentrum von M87“, bemerkt Dr. Matthias Beilicke, einer der beteiligten Wissenschaftler von der Universität Hamburg. „Relativistische Effekte, die in den sonstigen, bislang nachgewiesenen extragalaktischen Quellen (Blazare) eine Rolle spielen und die den Zusammenhang zwischen Zeitvariation und Quellgröße modifizieren, sollten im Fall von M87 von untergeordneter Bedeutung sein, da der Plasmastrom von M87 nicht auf die Erde gerichtet ist.“

Die hochenergetische Gammastrahlung entsteht damit höchstwahrscheinlich in der unmittelbaren Umgebung des supermassiven Schwarzen Lochs im Zentrum von M87; andere Strukturen in M87, wie beispielsweise der Plasmastrom, haben tendenziell größere Dimensionen. Die Physik der Emissionsprozesse ist allerdings noch nicht wirklich verstanden. Wegen der Nähe zum Schwarzen Loch diskutieren die Forscher auch ganz neuartige Mechanismen: So könnten Wasserstoffkerne im Feld eines rotierenden Schwarzen Lochs auf extreme Energien beschleunigt werden und dann Gamma-Quanten abstrahlen. In der Umgebung des Schwarzen Lochs wird auch ein Teil der von diesem angesaugten Materie in den relativistischen Plasmastrom umgeleitet; ein Vorgang, der ebenfalls noch nicht genau verstanden ist. Die Tatsache, dass hochenergetische Gamma-Strahlung ungehindert aus dieser „aktiven“ Region entkommen kann, mag auf den ersten Blick erstaunen. Dies ist jedoch möglich, da in das Schwarze Loch in M87 offensichtlich vergleichsweise wenig Materie einfällt und es im Vergleich zu vielen anderen Schwarzen Löchern noch eine eher „harmlose“ Umgebung darstellt.

Mit dieser neuen sowie den vorangegangenen Entdeckungen extragalaktischer Quellen liefert H.E.S.S. einen wichtigen Beitrag zur Entschlüsselung der Prozesse, die zur Entstehung außerordentlich hochenergetischer Gamma-Quanten führen. Die Radiogalaxie M87 stellt ein einzigartiges Labor zur Untersuchung des Kerns einer solchen aktiven Galaxie dar, in deren Zentrum ein Schwarzes Loch als kraftvoller „Motor“ die geladenen Teilchen auf extrem hohe Energien beschleunigt. M87 kann man mit den zahlreicheren, aber weiter entfernten Blazaren vergleichen, in denen jedoch im Gegensatz zu M87 der Plasmastrom unseren Blick auf die Zentralregion verbirgt. Mit Hilfe von H.E.S.S. gelang nun im Falle von M87 ein klarer Einblick in den „Maschinenraum“ einer Galaxie. Dieser wird zu einem besseren Verständnis extragalaktischer Quellen hochenergetischer Gamma-Strahlung führen.
(Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V., 27.10.2006 - AHE)
 
Printer IconShare Icon