• Schalter wissen.de
  • Schalter wissenschaft
  • Schalter scinexx
  • Schalter scienceblogs
  • Schalter damals
  • Schalter natur
Scinexx-Logo
Logo Fachmedien und Mittelstand
Scinexx-Claim
Facebook-Claim
Google+ Logo
Twitter-Logo
YouTube-Logo
Feedburner Logo
Dienstag, 30.05.2017
Hintergrund Farbverlauf Facebook-Leiste Facebook-Leiste Facebook-Leiste
Scinexx-Logo Facebook-Leiste

Bose-Einstein- Kondensation bei Raumtemperatur gelungen

Vorhersage von Albert Einstein bestätigt

Ein internationales Wissenschaftler-Team hat erstmals einen Super-Quantenzustand von magnetischen Wellen, ein so genanntes Bose-Einstein-Kondensat, ohne Kühlung bei Raumtemperatur erzeugt. Die Physiker berichten in der aktuellen Ausgabe des Wissenschaftsmagazins Nature über ihre Studie, mit der sie eine Vorhersage von Albert Einstein bestätigen konnten.
Bose-Einstein-Kondensat

Bose-Einstein-Kondensat

Die so genannte Bose-Einstein-Kondensation beschreibt einen neuartigen Zustand von Materie, bei dem alle Atome ihre Eigenständigkeit verlieren und unisono - wie ein einzelnes Quantenobjekt - im Gleichtakt schwingen. Dieses "Superatom" ist eines der faszinierendsten Phänomene der Physik, da die Quantennatur der Materie hier deutlich hervortritt. Es ist benannt nach Satyendra Nath Bose und Albert Einstein, die das Phänomen vor mehr als 80 Jahren vorhergesagt hatten.

Die Bose-Einstein-Kondensation findet jedoch nur unter ganz bestimmten Bedingungen statt: die Dichte der Teilchen muss einen kritischen Wert überschreiten. Obwohl Einstein überzeugt war, dass dies auch bei typischen Umgebungstemperaturen gelingen müsste, ist die Bose-Einstein Kondensation bisher nur bei sehr kleinen Temperaturen nahe dem absoluten Nullpunkt gelungen. Durch die Schwierigkeit, ultratiefe Temperaturen zu erzeugen, gehörte die Erzeugung eines Bose-Superatoms zu den größten Herausforderungen der modernen experimentellen Physik des letzten Jahrhunderts.

Erst im Jahr 2001 wurde die experimentelle Beobachtung einer Bose-Einstein-Kondensation in extrem ultra-kalten, verdünnten Alkali-Gasen mit dem Nobelpreis für Physik ausgezeichnet. Es schien seitdem völlig unmöglich, Bose-Einstein-Kondensation von Atomen bei Raumtemperatur zu beobachten, da die erforderlichen Atomdichten bei Raumtemperatur sofort zur Bildung von Flüssigkeiten oder Festkörper führen.


Allerdings können nicht nur Atome diese Kondensation zeigen. Gase magnetischer Quanten in Festkörpern, so genannte Magnonengase, sind Atomgasen sehr ähnlich und existieren bereits bei Raumtemperatur. Allerdings können auch sie nicht einfach in den Zustand der Bose-Einstein-Kondensation versetzt werden, da die erforderliche Magnonendichte genau wie beim Atomgas nicht erreicht werden kann.

Laserstrahl als Messfühler


Physiker um Professor Sergej Demokritov vom Institut für Angewandte Physik der Westfälischen Wilhelms-Universität Münster ist es jetzt jedoch in Zusammenarbeit mit Kollegen der TU Kaiserslautern und Forschern in den USA und der Ukraine gelungen, dieses Hindernis auf dem Weg zu einem Bose-Einstein-Kondensat bei Raumtemperatur zu überwinden. Mit Hilfe von Mikrowellen erzeugten sie zusätzliche Magnonen und mischten sie den vorhandenen Magnonen bei.

Obwohl die zusätzlichen Magnonen nur eine Millionstel Sekunde existieren, reichte diese Zeit den Wissenschaftlern, um das Verhalten des magnetischen Supergases mit einem Laserstrahl als Messfühler zu untersuchen.

So konnten die Wissenschaftler in Münster, die ihre Arbeit im "Center for Nonlinear Science" der WWU vorantreiben, erfolgreich zeigen, dass der kollektive Quantenzustand bei Raumtemperatur erreicht wird, wie es Albert Einstein vorhergesagt hatte: ein magnetisches Bose-Einstein-Kondensat ohne jede Kühlung.
(idw - Universität Münster, 02.10.2006 - DLO)
 
Printer IconShare Icon