• Schalter wissen.de
  • Schalter wissenschaft
  • Schalter scinexx
  • Schalter scienceblogs
  • Schalter damals
  • Schalter natur
Scinexx-Logo
Logo Fachmedien und Mittelstand
Scinexx-Claim
Facebook-Claim
Google+ Logo
Twitter-Logo
YouTube-Logo
Feedburner Logo
Freitag, 20.10.2017
Hintergrund Farbverlauf Facebook-Leiste Facebook-Leiste Facebook-Leiste
Scinexx-Logo Facebook-Leiste

Biosensor auf Virenjagd

Neues Verfahren ermöglicht direkte Messungen ohne Marker

Egal ob Schadstoffe im Wasser oder Viren im Blut: Wissenschaftler vom Bonner Forschungszentrum caesar haben ein neues Biosensorsystem entwickelt mit dem sich ein breites Spektrum von Stoffen messen lässt. S-sens, so der Name des Sensors, ist für einen Einsatz sowohl in Biochemie, Medizin oder Umweltschutz einsetzbar.
S-sens misst Bindungsprozesse zwischen Molekülen

S-sens misst Bindungsprozesse zwischen Molekülen

"Unser Sensor misst Bindungsprozesse zwischen Molekülen - markerfrei und in Echtzeit", erklärt Markus Perpeet von caesar. Herkömmliche Messverfahren verwenden häufig fluoreszierende oder radioaktive Marker, um die untersuchten Stoffe zu kennzeichnen.

Der Nachteil dabei ist, dass es durch die Markermoleküle zu einer unerwünschten Beeinflussung und damit einer Verfälschung der untersuchten Wechselwirkung kommen kann. Die Wissenschaftler haben daher ein System entwickelt, das Moleküle aufspüren kann, ohne sie gleichzeitig zu verändern.

Biosensoren kombinieren elektronische Bauteile mit biologischen Analysemethoden. S-sens besteht aus einem Sensorchip, auf dessen Oberfläche Rezeptormoleküle aufgebracht werden. Für eine Messung wird die Chipoberfläche in Schwingung versetzt. Analysiert wird eine Flüssigkeit, indem eine kleine Menge davon über den Chip geleitet wird. Sind die gesuchten Stoffe in der Probe vorhanden, verbinden sich die entsprechenden Moleküle mit den Rezeptoren und die Masse an der Chipoberfläche nimmt zu. Diese Massenzunahme verändert das Schwingungsverhalten des Sensorchips.


Gemessen werden die Amplitude und die Phase der Schwingungen, also ihre Intensität und ihr zeitliches Verhalten. Das Funktionsprinzip des Sensorsystems lässt sich mit dem einer hochsensiblen Mikrowaage vergleichen. Es kann Massenänderungen von weniger als 80 Femtogramm pro Quadratmillimeter erfassen (1 Femtogramm sind 0,000000000000001 Gramm). Das entspricht etwa dem Gewicht eines E.coli-Bakteriums.

Bindungsexperimente mit DNA


Erste Geräte wurden bereits an die Fachhochschule in Basel und die Universität Bonn geliefert. Weitere gehen an die Stanford University und das Forschungszentrum Borstel bei Hamburg.

"Gegenwärtig wird der Sensor vorzugsweise in der biochemischen Forschung angewendet", berichtet Perpeet, "so haben wir unter anderem Bindungsexperimente mit DNA durchgeführt. Diese sind für die Krebsdiagnose von großem Interesse. Wir können auf diese Weise charakteristische Mutationen des Erbguts identifizieren, die ein erhöhtes Krebsrisiko anzeigen."

Neben der biochemischen Forschung sowie dem medizinisch-pharmazeutischen Bereich sind der Umweltschutz und die Lebensmittelanalyse viel versprechende Anwendungsfelder. Das Gerät lässt sich je nach Anforderung in vielfältiger Weise modifizieren. Die Oberfläche des Chips kann für ein breites Spektrum von Kopplungsmechanismen eingerichtet werden. Ihre Methode, unerwünschte Störeinflüsse während einer Messung zu reduzieren, haben die Wissenschaftler zum Patent angemeldet.
(idw - caesar, 05.09.2006 - DLO)
 
Printer IconShare Icon