• Schalter wissen.de
  • Schalter wissenschaft
  • Schalter scinexx
  • Schalter scienceblogs
  • Schalter damals
  • Schalter natur
Scinexx-Logo
Logo Fachmedien und Mittelstand
Scinexx-Claim
Facebook-Claim
Google+ Logo
Twitter-Logo
YouTube-Logo
Feedburner Logo
Freitag, 22.09.2017
Hintergrund Farbverlauf Facebook-Leiste Facebook-Leiste Facebook-Leiste
Scinexx-Logo Facebook-Leiste

Bakterienhülle als Edelmetall-Spender

Wie Mikroorganismen Nano-Cluster aus Palladium herstellen

Wissenschaftler des Forschungszentrums Rossendorf haben den „Überlebenstrick“ eines Bakteriums ausgenutzt, um hochstabile Nanopartikel aus dem Edelmetall Palladium herzustellen. Die winzigen Kügelchen sind nur einige Millionstel Millimeter groß und weisen völlig neue Eigenschaften auf. Wie die Forscher in der Fachzeitschrift Biophysical Journal berichten sind sie vermutlich ideal geeignet für den Einsatz in der Katalysatortechnik.
Schicht aus Palladiumclustern

Schicht aus Palladiumclustern

Die Nanotechnologie wird von Experten als die Schlüsseltechnologie des 21. Jahrhunderts bezeichnet. Winzigkleine Partikel - ein Nanometer entspricht einem Millionstel Millimeter - werden heute bereits eingesetzt im Automobilbau, in der Optik und Elektronik oder auch in Materialien für Medizin und Hygiene. Die Natur hat eigene Mechanismen auf der Nanometerskala entwickelt. Grundlegendes Wissen um diese natürlichen Prozesse kann zur Entwicklung neuer Nano-Materialien beitragen.

Um Nanopartikel aus dem Edelmetall Palladium herzustellen, nutzen Biologen vom Forschungszentrum Rossendorf (FZR) die Eiweißhülle eines Bakteriums als Trägerschicht. Das Bakterium schützt sich mit dieser Hülle vor dem Schwermetall Uran und kann damit in der exotischen Umgebung einer Uranerz-Abfallhalde überleben. Das Bakterium heißt "Bacillus sphaericus JG-A12" und wurde 1997 von einem Biologenteam des FZR in der Halde Johanngeorgenstadt in Sachsen entdeckt.

Seine Eiweißhülle, von Forschern S-Layer genannt, weist eine regelmäßige Gitterstruktur mit Poren in der Größe von einigen Nanometern auf. Auf diese Gitterstruktur brachten FZR-Wissenschaftler zunächst ein Metallsalz mit gelösten Palladium-Ionen auf. Anschließend beobachteten sie die Anbindung der Metallsalze an die Eiweißhülle mit Hilfe eines patentierten Verfahrens der Infrarot-Spektroskopie. Das Hauptinteresse der Forscher galt genau dieser Interaktion zwischen dem biologischen Molekül und dem Metall.


In den Poren des S-Layers verwandelt sich die unedle Metallsalzlösung unter Einsatz von Wasserstoff in das Edelmetall, das in Form von winzigen Palladiumkügelchen in regelmäßigen Abständen auf der Trägerschicht angeordnet ist. Ein solches Kügelchen besteht aus nur 50 bis 80 einzelnen Palladium-Atomen. Im Ergebnis entsteht eine Schicht aus Palladiumclustern mit neuartigen Eigenschaften. Das Bemerkenswerte hierbei ist, dass sich die Eiweißhülle und die Nanopartikel gegenseitig stabilisieren. Damit bleibt das Gesamtsystem sowohl bei hohen Temperaturen als auch in einer säurehaltigen Umgebung hochstabil.

Nano-Katalysatoren aus Palladium


Aufgrund ihres kleinen Durchmessers bieten die Palladiumpartikel im Verhältnis zu ihrer Größe sehr viele Oberflächenatome, an denen andere Substanzen binden können. Palladium wird heute vielfach als Katalysator eingesetzt, etwa in der chemischen Industrie oder zur Entgiftung von Autoabgasen. Nano-Katalysatoren aus Palladium sind interessant, da sie bereits bei niedrigeren Temperaturen als Palladium in herkömmlichen Katalysatoren chemische Reaktionen beschleunigen. Die Technologie hierfür wird in vereinzelten Labors auch bereits erprobt.

Die FZR-Wissenschaftler gehen jedoch einen Schritt weiter, denn ihr Ziel ist es, neuartige Nano-Katalysatoren mit anderen Edelmetallen wie etwa Gold herzustellen oder aber die Größe für Palladium-Nanocluster gezielt zu verändern. So könnten Einsatzmöglichkeiten und Effizienz von Nanokatalysatoren noch erheblich gesteigert werden. Als erster Gruppe ist es ihnen vor kurzem gelungen, die Art und den Ort der Bindung zwischen dem Edelmetall und der Eiweißhülle des "Bacillus sphaericus JG-A12" genauestens zu bestimmen. Dies ist eine wesentliche Voraussetzung dafür, das S-Layer-Protein gentechnisch zu manipulieren. Selbst Materialien mit neuen optischen oder magnetischen Eigenschaften könnten dann in Zukunft mit der Hilfe von Bakterien erzeugt werden.
(idw - Forschungszentrum Rossendorf, 17.08.2006 - DLO)
 
Printer IconShare Icon