• Schalter wissen.de
  • Schalter wissenschaft
  • Schalter scinexx
  • Schalter scienceblogs
  • Schalter damals
  • Schalter natur
Scinexx-Logo
Logo Fachmedien und Mittelstand
Scinexx-Claim
Facebook-Claim
Google+ Logo
Twitter-Logo
YouTube-Logo
Feedburner Logo
Montag, 24.07.2017
Hintergrund Farbverlauf Facebook-Leiste Facebook-Leiste Facebook-Leiste
Scinexx-Logo Facebook-Leiste

Mathematik für schonendere Computertomographie

Neuer Algorithmus erreicht mehr Bildqualität mit weniger Strahlenbelastung

Röntgenstrahlen sind potenziell krebsauslösend. Wo der Schwellenwert dafür liegt, ist aber och unbekannt. Gleichzeitig basieren jedoch einige diagnostische Verfahren, darunter vor allem die Computertomographie (CT), auf dieser Strahlung. Jetzt haben Wissenschaftler eine mathematische Methode entwickelt, mit der aus weniger CT-Daten – und damit auch mit geringerer Strahlendosis – trotzdem bessere Aufnahmen erstellt werden können.
Die Computertomographie wird immer leistungsfähiger: mehr Bilder in kürzerer Zeit, mehr diagnostische Möglichkeiten. So erlaubt es die moderne Mehrschicht-CT, mehrere aneinander angrenzende Schichten des Körpers gleichzeitig zu betrachten. Die Anzahl der CT-Aufnahmen wird also weiter steigen - und damit auch die Strahlenbelastung. Schon jetzt ist vor allem die Computertomographie (CT), für den größten Teil der Strahlenbelastung der Bevölkerung verantwortlich, wie das Bundesamt für Strahlenschutz festgestellt hat. Technische Verbesserungen konnten die Dosis pro CT zwar bisher um maximal 30 Prozent senken, bei weiterer Reduzierung würde durch erhöhtes Bildrauschen jedoch unweigerlich die Bildqualität leiden.

Neuer Algorithmus effektiver


Um trotz geringerer Dosis Aufnahmen hoher Qualität zu erzeugen, setzt die Arbeitsgruppe Medizinphysik am Institut für Strahlenschutz des GSF–Forschungszentrums für Umwelt und Gesundheit in Neuherberg bei München auf die Mathematik: Ein neuartiger Algorithmus für die notwendige Rekonstruktion der Bilder aus den CT-Daten nutzt die in den Rohdaten steckende Information besser aus, erklärt der Leiter der Arbeitsgruppe, Dr. Christoph Hoeschen. So lassen sich aus der Hälfte der Daten - entsprechend einer halbierten Strahlenbelastung - mindestens gleich gute Bilder rekonstruieren wie mit dem bisherigen Standardverfahren, der "Filtered Back Projection" (FBP).

Die Mess-Daten werden aus verschiedenen Winkeln aufgenommen, der gesamte Datensatz bildet ein so genanntes Sinogramm. In einer Rechenoperation entsteht daraus eine Annäherung an das ursprüngliche Bild. Der Algorithmus der FBP besteht aus zwei Hauptschritten: der Rückprojektion und einer Filterung. Diese Filterung ist notwendig, um die bei der Rückprojektion entstehenden Fehler auszugleichen, bringt aber eine gewisse Unschärfe ins Bild. Um diese möglichst gering zu halten, muss man so hoch aufgelöst messen wie möglich, und zwar - damit nun das Bildrauschen nicht zu groß wird - mit photonenreichen Strahlen. Sprich: Man muss eine hohe Strahlenbelastung in Kauf nehmen.


Rekonstruktion durch Polynome


Der neue Rekonstruktionsalgorithmus, den die GSF-Wissenschaftler gemeinsam mit Kollegen von der Universität Oregon in Eugene, USA, geschaffen haben, kann direkt aus den Rohdaten eines CT-Scans Bilddaten errechnen. Basis der "Orthogonal Polynomial Expansion on the Disc“ (OPED) ist die Tatsache, dass sich eine Funktion, die das Objekt beschreibt, näherungsweise durch ein Polynom wiedergeben lässt. Durch geschickte Auswahl der benötigten Basisfunktionen können die Experten mit relativ geringem Rechenaufwand und auf einfache Weise aus Rohdaten eines CT-Scans eine äußerst genaue Näherung der tatsächlichen Eigenschaften des Objekts rekonstruieren.

Auch ein weiteres Problem der Rekonstruktion mittels FBP kann OPED elegant umgehen: Da die Strahlen nicht parallel, sondern fächerförmig verlaufen, die meisten gängigen FBP-Versionen aber zwingend parallele Strahlen erfordern, müssen aus dem Strahlenfächer Parallelstrahlen berechnet werden. Das kann zu Fehlern in der Rekonstruktion führen. Mit OPED lassen sich die benötigten Daten direkt aus den mit gefächerten Strahlen aufgenommenen Scans gewinnen. Die Daten müssen nur umsortiert werden, dann kann die Rekonstruktion sofort beginnen.

Im Test gegen altes Verfahren durchgesetzt


Dass OPED den Vergleich mit FBP nicht scheuen muss, haben Testsimulationen bewiesen. Anhand technischer Objekte und selbst erstellter Voxelmodelle menschlicher Körper wurden Rohdaten simuliert, wie sie ein tatsächliches CT liefern würde. Bei der anschließenden Rekonstruktion dieser Daten - einmal mit FBP und einmal mit OPED aus der Hälfte der FBP-Daten – gab das OPED-Bild Details schärfer wieder, ohne deutlich verstärktes Rauschen.

Quantitative Auswertungen technischer Phantome zeigten: Mit OPED ist bei halber Dosis mindestens dasselbe Signal-Rauschverhältnis zu erreichen wie mit FBP bei voller Dosis. Mit dem neuen Algorithmus lässt sich also die Dosis ohne jegliche Qualitätseinbuße um die Hälfte reduzieren. Nun muss OPED nur noch die Hürde der Markteinführung nehmen, dann könnte in absehbarer Zukunft eine schonendere Computertomographie in Arztpraxen und Kliniken Einzug halten.
(GSF - Forschungszentrum für Umwelt und Gesundheit, 11.07.2006 - NPO)
 
Printer IconShare Icon