• Schalter wissen.de
  • Schalter wissenschaft
  • Schalter scinexx
  • Schalter scienceblogs
  • Schalter damals
  • Schalter natur
Scinexx-Logo
Logo Fachmedien und Mittelstand
Scinexx-Claim
Facebook-Claim
Google+ Logo
Twitter-Logo
YouTube-Logo
Feedburner Logo
Freitag, 26.05.2017
Hintergrund Farbverlauf Facebook-Leiste Facebook-Leiste Facebook-Leiste
Scinexx-Logo Facebook-Leiste

Töne als neuronales Mosaik

Karte des Hörens im Gehirn erstellt

Das Gehirn filtert, was wir hören. Das gelingt ihm auch deshalb, weil einzelne Gruppen seiner Neuronen nur auf bestimmte Frequenzen reagieren. Neurobiologen haben jetzt für einige Bereiche der Hörrinde eine Frequenzkarte erstellt: Mit der hochauflösenden funktionellen Kernspintomografie haben sie zudem identifiziert, welche neuronalen Felder jeweils durch einzelne Frequenzen und welche durch Frequenzgemische aktiviert werden. Über ihre Ergebnisse berichten sie in der Zeitschrift PLoS Biology.
Was wir hören, entscheidet unser Gehirn. Ob in einer Fabrikhalle, in der ratternde Maschinen Krach machen, oder bei einer Party, auf der Musik und redende Leute durcheinander lärmen: Wenn wir uns unterhalten, können wir die Stimme des Gesprächspartners immer noch aus der Geräuschkulisse herausfiltern. Warum das funktioniert, ist aber noch nicht völlig verstanden. Immerhin haben Neurophysiologen inzwischen herausgefunden, dass bestimmte Gehirnareale die Cochlea, die Schnecke im Innenohr, abbilden - und zwar ähnlich wie bei der Netzhaut Punkt für Punkt.

Felder des auditorischen Cortex von Makaken

Felder des auditorischen Cortex von Makaken

Für die Cochlea bedeutet das, dass verschiedene Frequenzen bestimmte Gruppen von Neuronen des auditorischen Cortex, der Hörrinde, aktivieren. Das Gehirn analysiert anschließend vermutlich, welche Schallquellen eine bestimmte Frequenz abgeben. Welche Bereiche des Gehirns für einzelne Frequenzen zuständig sind, konnten Wissenschaftler bislang im Detail nur mit elektrophysiologischen und anatomischen Untersuchungen zeigen, und das auch nur im Gehirn von Tieren, zum Beispiel von Makaken.

Vergleich mit Affen jetzt möglich


Am Menschen werden solche Studien nur selten gemacht. Dafür haben Neurologen das Gehirn des Menschen inzwischen ziemlich gründlich mit der funktionellen Kernspintomografie (fMRI) durchleuchtet, auch den auditorischen Cortex. Die Aktivitätsmuster, die sie darin beim Hören sahen, wurden dann oft mit Studien an Affen verglichen. "Das ist aber ein schlechter Vergleich", sagt Christopher Petkov, der die Untersuchungen am Max-Planck-Institut für biologische Kybernetik in Tübingen leitete: Denn fMRI-Aufnahmen des auditorischen Cortex von Affen gab es bislang nicht. "Wir haben diese Lücke jetzt geschlossen."


Nun können die Wissenschaftler vergleichen, welche Ergebnisse verschiedene Methoden über den auditorischen Cortex der Makaken liefern. Sie können aber auch besser untersuchen, inwiefern sich die neuronalen Schallzentren der Affen und des Menschen ähneln und unterscheiden. Auf diese Weise können sie künftig auch besser untersuchen, wie sich das Gehirn in einer lauten Umgebung auf eine einzelne Schallquelle konzentriert.

Frequenzkarten der auditorische Felder


In der neue fMRI-Studie haben die Wissenschaftler nicht nur die einzelnen Felder des auditorischen Cortex (ACFs) identifiziert, wie sie es aus den Ergebnissen der früheren Untersuchungen erwartet hatten. Sie haben auch für die meisten Felder Frequenzkarten gezeichnet. Sie haben also festgestellt, wo in einem Feld bestimmte Frequenzen verarbeitet werden. Vier ACFs haben sie dabei erstmals kartografiert. Insgesamt haben sie nun elf ACFs charakterisiert, die sich auf der Hirnoberfläche mosaikartig anordnen. Dabei ergab sich ein periodisches Muster:

Über ein Feld hinweg nimmt die verarbeitete Frequenz mit einem Gradienten entweder ab oder zu. Im den daran anschließenden Feldern entwickelt sich die Frequenz genau umgekehrt, so dass sich über den auditorischen Cortex hinweg ein Auf und Ab der Tonhöhen ergibt, für die bestimmte Nerven zuständig sind. Jede Frequenz findet sich daher in jedem ACF wieder. "Wahrscheinlich haben die einzelnen ACF dabei verschiedene Aufgaben", sagt Petkov: "Die Unterschiede kennen wir aber noch nicht genau."

Einzeltöne versus „Geräusch“


Immerhin haben die Forscher die ACFs schon in zwei Gruppen eingeteilt, die jeweils für andere Schallsignale zuständig sind. Drei dieser Felder, die eine Art Kern des auditorischen Cortex bilden, reagieren auf Töne einzelner Frequenzen. Die anderen acht, darunter auch die neu charakterisierten, sprechen eher auf Geräusche an, in denen sich verschiedene Frequenzen mischen. Diese ACFs schließen sich wie ein Gürtel um die drei Kernfelder.

Das Muster der Tonhöhen in jedem einzelnen ACF war jedoch nicht so differenziert, wie es sich auf der Tastatur eines Klaviers findet. Richtig gut konnten die Zuständigkeiten bestimmter Nerven nur zuordnen, wenn die Töne vier Oktaven auseinander lagen. "Das liegt aber vor allem an den experimentellen Bedingungen", sagt Petkov: Um im fMRI überhaupt deutliche Signale zu sehen, haben sie die Affen mit Tönen beschallt, die die Tiere in ihrer natürlichen Umgebung hören und die gleichzeitig lauter waren als die Testtöne in elektrophysiologischen Studien. "Dann sind immer größere Bereiche im auditorischen Cortex aktiv", so Petkov. Für die Max-Planck-Forscher war das nur ein Nebenaspekt. Diese Erkenntnis gibt aber einen Hinweis, wie Lärm den auditorischen Cortex beeinträchtigt und was im Gehirn passiert, wenn sich Menschen einen Hörschaden zuziehen.
(MPG, 21.06.2006 - NPO)
 
Printer IconShare Icon