Anzeige
Astronomie

Neutronenstern taumelt durch’s All

Nicht alle Pulsare rotieren so stabil, wie Astrophysiker bislang dachten

Neutronenstern RX J0720.4-3125 © Frank Haberl / Max-Planck-Institut für extraterrestrische Physik

Ein Kreisel kann sich sauber um seine Achse drehen, meistens aber taumelt er – nicht sehr elegant – über Tisch oder Boden, weil er einen Schubs zur Seite bekommen hat. Ein internationales Team von Wissenschaftlern hat jetzt einen Neutronenstern beobachtet, der vermutlich ebenfalls einen solchen Drall erfahren hat, als er bei einer Supernova entstand.

Frank Haberl vom Max- Planck-Institut für extraterrestrische Physik hat gemeinsam mit Forscherkollegen über wenige Jahre hinweg Schwankungen in Röntgenspektrum von RX J0720.4-3125 beobachtet. Diese Veränderungen ergeben sich, wenn die Temperatur auf der Oberfläche des Neutronensterns variiert. Die Wissenschaftler schließen daraus, dass der Pulsar leicht durch den Raum taumelt, seine Achse also präzediert. Daher wende er uns mal heißere und mal kühlere Flecken seiner Oberfläche zu. Bislang galten Neutronensterne oder Pulsare als sehr stabile Kreisel. Die neuen Erkenntnisse werden demnächst in der Fachzeitschrift Astronomy & Astrophysics erscheinen.

Himmelskörper der Extreme

Astrophysiker wissen über Neutronensterne oder Pulsare schon eine ganze Menge. Demnach präsentieren sich die Überbleibsel einer Supernova als Himmelskörper der Extreme: Die Masse der Sonne konzentrieren sie in einer Kugel, deren Durchmesser nicht größer als der Münchens ist. Ihre Dichte ist mit rund einer Milliarde Tonnen pro Kubikzentimeter größer als die eines Atomkerns. Auf ihrer Oberfläche herrschen Temperaturen von rund einer Million Grad Celsius und ihr Magnetfeld ist mehrere Billionen mal stärker als das der Erde.

Bei ihrer Geburt drehen sie sich rund 100 Mal pro Sekunde um sich selbst – das Magnetfeld bremst die Pulsare jedoch langsam ab. Wie es allerdings in ihrem Inneren aussieht, haben Astrophysiker noch nicht geklärt. Es könnte zum Beispiel sein, dass sich ihre harte Schale um einen supraflüssigen Kern dreht. "Unsere Arbeit könnte helfen, dieses Rätsel zu lösen", sagt Frank Haberl vom Max-Planck-Institut für extraterrestrische Physik.

Verräterische Schwankungen im Röntgenspektrum

Zusammen mit einem internationalen Wissenschaftler-Team wertete Haberl Messungen des ESA-Satelliten XMM-Newton aus – unter anderem die Signale, die der Neutronenstern RX J0720.4-3125 sendete. Der Pulsar mit dem sperrigen Namen dreht sich rund 1000 Lichtjahre entfernt im Sternbild des Großen Hundes. Sein optisches Licht ist allerdings so schwach, dass es nur mit den stärksten Teleskopen zu beobachten ist. Als Röntgenquelle strahlt RX J0720.4-3125 allerdings recht kräftig.

Anzeige
Temperaturschwankungen, die sich aus den Messungen von XMM-Newton für die Oberfläche von RX J0720.4-3125 ergeben. © Frank Haberl / Max-Planck-Institut für extraterrestrische Physik

Frank Haberl und seine Kollegen unter anderem von der Universität Padua dem niederländischen Institute for Space Research und dem Mullard Space Science Laboratory am University College in London haben seine Röntgenspektren aus verschiedenen Jahren nun genauer inspiziert. Dabei stellten die Astrophysiker fest, dass sich die Spektren des Neutronensterns im Laufe weniger Jahre veränderten: Zwischen Mai 2000 und Mai 2004 wuchs der Anteil härteren Röntgenlichts in ihren Messungen. Das heißt der Pulsar strahlte im Schnitt Röntgenlicht von höherer Energie aus. Anschließend sank dieser Anteil energiereicher Strahlung wieder.

Das könnte bedeuten, dass auch die Oberflächentemperatur von RX J0720.4-3125 schwankt – und zwar fast um 100.000 Grad Celsius, also etwa ein Zehntel: Von der Temperatur, die auf der Oberfläche eines Himmelskörpers herrscht, hängt ab, wie stark ein Himmelkörper in einem bestimmten Ausschnitt des elektromagnetischen Spektrums strahlt. "Wir halten es aber für sehr unwahrscheinlich, dass die Oberflächentemperatur des Neutronensterns in wenigen Jahren so stark schwankt", so Haberl. Er und seine Kollegen vermuten vielmehr, dass die Achse von RX J0720.4-3125 eine Kreisbewegung beschreibt und nicht stabil im Raum ruht. Dieses Taumeln nennen Physiker die Präzession eines Kreisels.

Asymmetrie im Magnetfeld?

Auf diese Weise rückt mal der eine Pol und mal der andere stärker ins Blickfeld von XMM-Newton. Da die Pole unterschiedlich heiß sind, strahlen sie auch verschieden hohe Anteile an hartem Röntgenlicht ab. Warum der eine Pol deutlich heißer ist als der andere, wissen die Wissenschaftler bislang jedoch noch nicht genau. "Möglicherweise ist das Magnetfeld nicht symmetrisch", sagt Haberl: Die Stärke des Magnetfelds ändert sich über die Oberfläche des Neutronensterns und beeinflusst, wieviel Wärme aus dem Inneren des Pulsars transportiert wird.

Darüber wie der kosmische Kreisel RX J0720.4-3125 ins Taumeln geraten ist, können Haberl und seine Mitarbeiter bislang auch nur spekulieren. Vermutlich hat sich der Stern ein bisschen abgeflacht, als er kurz nach seiner Geburt 100 mal pro Sekunde um die eigene Achse rotierte. "Der Effekt wäre aber viel kleiner als bei der Erde, weil seine Dichte so groß ist", sagt Haberl. Er könnte aber immerhin ausreichen, um ihn zum Taumeln zu bringen – vorausgesetzt die Supernova, die ihn hervorgebracht hat, hat ihm einen kleinen Schubs gegeben.

(MPG, 20.04.2006 – NPO)

Teilen:
Anzeige

In den Schlagzeilen

Diaschauen zum Thema

keine Diaschauen verknüpft

Dossiers zum Thema

News des Tages

Feldhase

Genom des "Osterhasen" entschlüsselt

Erstes Bild der Magnetfelder ums Schwarze Loch

Ägypten: Wandbilder aus der Totenstadt

Wie das Klima den antarktischen Zirkumpolarstrom beeinflusst

Bücher zum Thema

Kosmologie für Fußgänger - Eine Reise durch das Universum von Harald Lesch und Jörn Müller

Die Geburt des Kosmos aus dem Nichts - Die Theorie des inflationären Universums von Alan Guth

Zu Hause im Universum - Ein Weltraumbuch von Ulrich Walter

Top-Clicks der Woche