• Schalter wissen.de
  • Schalter wissenschaft
  • Schalter scinexx
  • Schalter scienceblogs
  • Schalter damals
  • Schalter natur
Scinexx-Logo
Logo Fachmedien und Mittelstand
Scinexx-Claim
Facebook-Claim
Google+ Logo
Twitter-Logo
YouTube-Logo
Feedburner Logo
Samstag, 21.01.2017
Hintergrund Farbverlauf Facebook-Leiste Facebook-Leiste Facebook-Leiste
Scinexx-Logo Facebook-Leiste

„Bruchpilot“ stabilisiert Nervenzellen

Erstmals Nanostrukturen der biologischen Signalübertragung sichtbar gemacht

Ein neues Fenster in die biologische Nanowelt haben Forscher des Göttinger Max-Planck-Instituts für biophysikalische Chemie aufgestoßen: Mit Hilfe der neu entwickelten STED-Mikroskopie (Stimulated Emission Depletion) konnten die Forscher jetzt erstmals Proteine in einzelnen synaptischen Vesikeln, winzigen Membranbläschen an den Verbindungen der Nervenzellen, abbilden und klären, wie die dort ausgeschütteten Proteine recycelt werden.
Nervenzelle mit intakten Synapsen

Nervenzelle mit intakten Synapsen

Seit seiner Erfindung im 17. Jahrhundert ist das Lichtmikroskop der wichtigste Schlüssel zu neuen biologischen und medizinischen Erkenntnissen. Doch Licht unterliegt als Welle der Beugung, deren auflösungsbegrenzende Wirkung von Ernst Abbe bereits 1873 erkannt wurde. Laut Abbe können Strukturen, die enger als 200 Nanometer beieinander liegen, nicht scharf voneinander getrennt werden. Sie erscheinen im Lichtmikroskop lediglich als verschwommenes Ganzes. Abbes Erkenntnis galt lange Zeit als unüberwindbar: Für eine höhere Auflösung - so die Lehrmeinung - könnte man nur ein Elektronenmikroskop einsetzen.

Auflösungsgrenze weiter verschoben


Obwohl sich Elektronen in der Tat schärfer bündeln lassen, ist es schwierig, spezifische Proteine in einer Zelle elektronenmikroskopisch sichtbar zu machen. Hinzu kommt, dass Elektronenstrahlen nur wenige Mikrometer in eine Probe eindringen. Unter anderem deshalb hat die Elektronenmikroskopie trotz höherer Auflösung bisher viele Fragen im biologischen Mikrokosmos offen gelassen. Hingegen kann man mit fluoreszierenden Markermolekülen einzelne Proteine spezifisch und effizient markieren und im optischen Fluoreszenzmikroskop sichtbar machen. Doch bisher haperte es hier an der Auflösung.

Doch Forschern der Abteilung NanoBiophotonik am Göttinger Max-Planck-Institut für biophysikalische Chemie ist es in den letzen Jahren nun gelungen, mit der Stimulated Emission Depletion (STED)-Mikroskopie die Abbesche Auflösungsgrenze in der Fluoreszenzmikroskopie zu überwinden. Ein STED-Mikroskop, wie es auch in den beiden jüngsten Forschungsprojekten eingesetzt wurde, erreicht eine Auflösung von 50 bis 70 Nanometer. Damit reduziert sich die Fläche des Fluoreszenzspots von ursprünglich 200 Nanometer Durchmesser um etwa eine Größenordnung.


Blick in Vorgänge an Synapsen


Diese Auflösung reichte den Forschern der Abteilung "Neurobiologie" am selben Max-Planck-Institut jetzt aus, um erstmals Proteine einzelner synaptischer Vesikel im Detail sichtbar zu machen. Vesikel sind mit einem Nervenbotenstoff gefüllte Membranbläschen von ca. 40 Nanometer Größe, welche den Botenstoff zur Kontaktstelle zwischen zwei Nervenzellen, der Synapse, transportieren. Ihren Inhalt schütten sie an der Synapse aus, indem sie mit der Membran der Nervenzelle verschmelzen. Sie visualisierten das Protein Synaptotagmin, das sich in der Membran der Vesikel befindet.

Unklar war bisher jedoch, ob die in der Membran der Vesikel enthaltenen und für die fehlerfreie Neurokommunikation mitverantwortlichen Proteine, wie etwa Synaptotagmin, sich nach der Verschmelzung des Vesikels über die Membran verteilen, oder ob sie zusammen bleiben. Die Göttinger Forscher konnten nun mithilfe der STED-Mikroskopie zeigen, dass die Synaptotagmin-Moleküle nach der Verschmelzung auf der Nervenmembran miteinander verbunden bleiben. Die Nervenzelle scheint sich also recht ‚ökonomisch’ zu verhalten - die in die Membran ausgeschütteten Proteine können "im Sammelpack" wieder aufgenommen werden.

“Bruchpilot“ bildet Ringe


Doch neuronale Vesikel werden nicht überall an einer Synapse gleich wahrscheinlich ausgeschüttet, sondern bevorzugt an so genannten "aktiven Zonen". Ein seinerzeit in der Fruchtfliege entdecktes Protein mit dem Namen „Bruchpilot“ spielt bei der Formierung dieser aktiven Zonen eine entscheidende Rolle, wie eine in "Science" publizierte gemeinsame Arbeit des Max-Planck-Instituts für biophysikalische Chemie, des European Neuroscience Institute und der Universität Würzburg zeigt.

Mithilfe der STED-Mikroskopie entdeckten die Wissenschaftler, dass sich das Protein „Bruchpilot“ in Ringen von etwa 150 Nanometer Durchmesser anordnet und auf diese Weise zur Ausbildung von aktiven Zonen führt. Dort scheint das Protein die Nähe zwischen Kalziumkanälen und Vesikeln zu etablieren, um somit effiziente Transmitterfreisetzung zu ermöglichen.

Beide Studien belegen eindeutig, dass Untersuchungen biologischer Zellen im Nanometerbereich nicht mehr nur der Elektronenmikroskopie vorbehalten sind. Im Gegenteil, aufgrund bereits durchgeführter physikalischer Studien weiß man inzwischen, dass die Auflösung der STED-Mikroskopie noch um ein Vielfaches gesteigert werden kann - prinzipiell bis auf molekulare Schärfe. Die STED-Mikroskopie scheint demnach ein neues Kapitel in der Mikroskopie aufzuschlagen, in dem grundlegende Fragestellungen der Zellbiologie auf der Nanoskala auch oder gerade mit fokussiertem Licht gelöst werden können.
(MPG, 19.04.2006 - NPO)
 
Printer IconShare Icon