• Schalter wissen.de
  • Schalter wissenschaft
  • Schalter scinexx
  • Schalter scienceblogs
  • Schalter damals
  • Schalter natur
Scinexx-Logo
Logo Fachmedien und Mittelstand
Scinexx-Claim
Facebook-Claim
Google+ Logo
Twitter-Logo
YouTube-Logo
Feedburner Logo
Montag, 16.01.2017
Hintergrund Farbverlauf Facebook-Leiste Facebook-Leiste Facebook-Leiste
Scinexx-Logo Facebook-Leiste

Mäuseherz im Gleichklang

Interzelluläre Röhren halten das Herz im Takt

Viele Zellen können mit ihren Nachbarn kommunizieren, indem sie über Röhren in ihrer Hülle Signalmoleküle austauschen. In der Regel geht das ziemlich flott. Im Herzen sorgen solche "schnellen" Röhren beispielsweise dafür, dass sich die Muskelzellen fast zeitgleich zusammenziehen. Doch zumindest im Mäuseherzen gibt es laut einer neuen Studie Bonner Forscher auch Röhren, die elektrische Reize und Signalmoleküle nur sehr langsam durchlassen. Die "langsamen" Röhren verhindern möglicherweise, dass die Kreislaufpumpe lebensbedrohlich aus dem Takt gerät. Sollte dieser Mechanismus auch beim Menschen vorhanden sein, hätte dies Auswirkungen auf die Behandlung von Herzerkrankungen.
Versuchtstier Maus

Versuchtstier Maus

Der Herzmuskel besteht bei Mäusen wie bei Menschen aus zwei Vorhöfen und zwei Hauptkammern. Wenn die Vorhöfe sich zusammenziehen, pumpen sie das Blut in die Hauptkammern. Diese kontrahieren ein wenig später und befördern das Blut dabei in den Körper- und Lungenkreislauf. Prinzipiell funktioniert das ohne Anstoß von außen. Jedes Säugetier- Herz verfügt nämlich über eine eigene Schrittmacherregion, den Sinusknoten. Durch dessen Taktgebung entstehen elektrische Reize, die durch "schnelle" interzelluläre Röhren über die Vorhöfe geleitet werden und veranlassen, dass diese sich zusammenziehen. Anschließend laufen die Reize im AV Knoten zusammen, treten von dort in die Hauptkammern über und bewirken ebenfalls deren Kontraktion.

Röhren mildern Vorhofflimmern


Die Reizweiterleitung im AV Knoten erfolgt jedoch verzögert, wie Dr. Jan Schrickel von der Medizinischen Klinik II gemessen hat. So ist gewährleistet, dass sich die Kammern erst nach den Vorhöfen zusammenziehen. "Mitverantwortlich für diese Verzögerung scheinen die 'langsamen' Connexinröhren zu sein", erklärt Maria Kreuzberg. "Wir fanden sie vor allem im Sinus- und AV-Knoten des Reizleitungssystem im Mausherzen." Bei Nagern, die dieses Connexin aufgrund eines gentechnischen Eingriffs nicht bilden konnten, funktionierte das Herz unter normalen Bedingungen ohne Probleme. Anders jedoch, wenn die Wissenschaftler an der Medizinischen Klinik II in diesen Mäusen ein so genanntes Vorhofflimmern hervorriefen. Dabei ziehen sich die Vorhöfe in hoher Frequenz unkoordiniert zusammen; der Bluttransport zu den Hauptkammern ist dadurch stark eingeschränkt. Lebensbedrohlich ist dieser Zustand nicht - zumindest, solange die Kammern normal arbeiten. Das zeigt eine Studie an der Universität Bonn, die am Institut für Genetik und in der Medizinischen Klinik und Poliklinik II entstanden und jetzt in der Fachzeitschrift Proceedings of the National Academy of Sciences (USA) erschienen ist.

Bei Mäusen hat ein Vorhofflimmern normalerweise kaum Auswirkungen auf die Schlagfrequenz der Hauptkammern - wahrscheinlich, weil die "langsamen" Connexinröhren beide Kammer-Systeme weitgehend voneinander entkoppeln. "Bei den Tieren ohne 'langsame' Connexinröhren ließ das Vorhofflimmern jedoch auch die Kammerfrequenz ansteigen", sagt Maria Kreuzberg. Die Koordination des Herzschlages scheint bei den gentechnisch veränderten Nagern nicht richtig zu klappen; Schlagfrequenz-Störungen könnten sich bei ihnen leichter von den Vorhöfen zu Hauptkammern ausbreiten. "Das kann unter Umständen gefährliche Konsequenzen haben", sagt Kreuzberg. "So könnten die Hauptkammern durch eine schnellere Überleitung lebensbedrohliche Arrhythmien entwickeln.


In Zukunft wollen wir herausfinden, ob 'langsame' Connexinröhren im Menschherzen eine ähnliche Bedeutung wie im Mausherzen haben." Denn beim Menschen gibt es einen ähnlichen Connexintyp wie bei der Maus. Wofür der Körper dieses Connexin benötigt, war lange unklar. "Wir haben daher in Mäusen untersucht, wo diese 'langsamen' Connexinröhren gebildet werden", erklärt die Bonner Doktorandin Maria Kreuzberg im Institut für Genetik.

So gibt es auch Menschen, bei denen die Schutzfunktion des AV-Knotens durch eine Art "Kurzschluss" umgangen wird. Eine solche zusätzliche Leitungsbahn besteht beim "Wolff-Parkinson-White-Syndrom". Hauptsymptom ist ein plötzlich auftretendes extremes Herzrasen, das zu so genanntem Kammerflimmern führen kann. Im Gegensatz zum Vorhofflimmern beim gesunden AV-Knoten ist dieser Zustand lebensgefährlich, da der Blutfluss gänzlich zum Erliegen kommen kann.
(idw - Rheinische Friedrich-Wilhelms-Universität Bonn, 11.04.2006 - AHE)
 
Printer IconShare Icon