Anzeige
Biologie

Gen-Quartett steuert Stammzellzahl bei Pflanzen

Neu entdeckter Mechanismus verhindert Verkümmerung oder krebsartige Wucherung

Arabidopsis-Keimlinge © MPG

Pflanzen verfügen dank ihrer Stammzellen lebenslang über die Fähigkeit, ständig neue Organe zu bilden. Wie Hormone und genetische Faktoren zusammenwirken, damit Pflanzen weder verkümmern noch krebsartig wuchern, war jedoch bisher unbekannt. Max-Planck-Wissenschaftler haben jetzt einen Mechanismus entschlüsselt, über den ein wachstumsförderndes Hormon und ein regulatorisches Eiweiß in Pflanzen verbunden sind, um die Zahl an Stammzellen steuern. Wie die Forscher in der aktuellen Ausgabe des Wissenschaftsmagazins Nature berichten, sind diese Erkenntnisse von grundsätzlicher Bedeutung für die gesamte Stammzellforschung.

Alle oberirdischen Teile einer Pflanze – Blätter, Blüten, Stängel, Samen – entspringen letztlich einem winzigen Gewebebereich an der Spitze des Sprosses. Diese von Biologen als Sprossmeristem bezeichnete Region enthält totipotente Stammzellen, die während der gesamten Lebenszeit einer Pflanze aktiv bleiben. Im Gegensatz zu Tieren, die nach dem Abschluss der Embryonalentwicklung nur noch über gewebespezifische Stammzellen verfügen, können Pflanzen daher über viele Jahre hinweg weiter wachsen und neue Organe ausbilden.

Botenstoffe und Gene arbeiten zusammen

Diese Fähigkeit birgt jedoch zugleich auch Gefahren: Steigt die Zahl der meristematischen Stammzellen zu schnell an, drohen krebsähnliche Wucherungen. Schrumpft der Stammzellpool dagegen stark, dann verkümmert die Pflanze. Um lebensfähig zu bleiben und die eigene Fortpflanzung zu sichern, muss die Pflanze daher die Zahl ihrer Stammzellen genau ausbalancieren. Wie man heute weiß, geschieht dies über zwei Regelwerke: zum einen über wachstumsfördernde Pflanzenhormone wie Auxin und Cytokinin, die bereits seit mehr als fünfzig Jahren bekannt sind.

Auf der anderen Seite wirken auch genetische Faktoren an der Stammzellregulation mit. Vor rund zehn Jahren wurde – ebenfalls in Tübingen – ein mit dem Namen „Wuschel“ belegtes, zentrales Steuerungsgen entdeckt, das entscheidenden Einfluss darauf hat, wie viele Zellen als Stammzellen im Sprossmeristem verbleiben. Rätselhaft war bislang jedoch, auf welche Weise Hormone und Gene zusammenarbeiten, um die feine Balance in der Sprossspitze aufrechtzuerhalten.

Dieses Rätsel hat das von Jan Lohmann geleitete Forscherteam am Tübinger Max-Planck-Institut für Entwicklungsbiologie nun gelüftet. Als Untersuchungsobjekt diente ihnen die „Hauspflanze“ der botanischen Forschung, die Ackerschmalwand Arabidopsis thaliana, deren Erbgut bereits vor einigen Jahren vollständig entziffert wurde. Mithilfe aufwändiger genetischer und biochemischer Experimente haben Lohmann und sein Team nun vier Gene identifiziert, die als mechanistische Verbindung zwischen den Pflanzenhormonen und den genetischen Steuerungselementen im Meristem gelten können.

Anzeige

Wuschel-Gen steuert Aktivität

Wie die Genexpressionsanalysen der Tübinger Forscher zeigen, unterliegen die zu den Arabidopsis Response Regulatoren (ARR) zählenden Erbanlagen ARR5, ARR6, ARR7 und ARR15 der genetischen Steuerung durch das Wuschel-Gen. Unter seinem Einfluss wird besonders die Aktivität von ARR7 im Sprossmeristem deutlich gedrosselt. Die aktuelle Studie belegt damit, dass die ARR-Gene direkt an der genetischen Regulation des Stammzellpools beteiligt sind. Zugleich erfüllen sie jedoch auch eine wichtige Aufgabe im hormonellen Regelwerk: Sie sind Teil einer negativen Rückkopplungsschleife, mit der das wachstumsfördernde Pflanzenhormon Cytokinin seine eigene Wirkung begrenzt.

Das Hormon selbst regt die meristematischen Stammzellen zur Teilung an; gleichzeitig aktiviert es jedoch verschiedene ARR-Gene, die ihrerseits die Cytokinin-Signalkette unterbrechen. „Wuschel unterstützt den Cytokinin-Effekt, indem es dessen negative Rückkopplung unterbindet“, erläutert Lohmann. So erkläre sich auch die frühere Beobachtung, dass Arabidopsis-Exemplare mit defektem Wuschel-Gen nur sehr kleine Meristeme ausbilden und in ihrem Wachstum gestört sind. Den gleichen Effekt fanden die Tübinger Forscher nun auch bei Mutanten, deren ARR7-Gen überaktiv war.

Cytokinin kann seine volle wachstumsfördernde Wirkung demnach nur in Geweben entfalten, in denen das Wuschel-Steuerungsgen aktiv ist. „Die meristematische Regulation ist ein hervorragendes Beispiel dafür, wie die Wirkung von frei zirkulierenden Hormonen auf bestimmte Gewebe begrenzt werden kann“, schwärmt Lohmann. Erst über solche Mechanismen werde es möglich, dass ein und dasselbe Hormon in verschiedenen Geweben unterschiedliche Wirkungen entfaltet – je nachdem, auf welche genetischen Voraussetzungen es dort trifft.

(idw – MPG, 22.12.2005 – DLO)

Teilen:
Anzeige

In den Schlagzeilen

News des Tages

Klima und Wirtschaft

Klimawandel: So teuer wird es

Neue Fossilien vom größten Meeressaurier

Wie schmeckte der Wein der Römer?

Wie Nagetiere ihre Schneidezähne schützen

Diaschauen zum Thema

keine Diaschauen verknüpft

Dossiers zum Thema

Phytohormone - Überlebenswichtige Botenstoffe im Pflanzenreich

Bücher zum Thema

Gentechnik bei Pflanzen - von Frank Kempken, Renate Kempken und Kerstin Stockmeyer

Die neue Welt der Gene - Visionen - Rätsel - Grenzen von Joachim Bublath

Dolly - Der Aufbruch ins biotechnische Zeitalter von Colin Tudge, Ian Wilmut & Keith Campbell

Die Genomfalle - Versprechungen der Gentechnik, ihre Nebenwirkungen und Folgen von Ursel Fuchs

Ingenieure des Lebens - DNA-Moleküle und Gentechniker von Huub Schellekens und Marian C Horzinek (Übersetzer)

Top-Clicks der Woche