• Schalter wissen.de
  • Schalter wissenschaft
  • Schalter scinexx
  • Schalter scienceblogs
  • Schalter damals
  • Schalter natur
Scinexx-Logo
Logo Fachmedien und Mittelstand
Scinexx-Claim
Facebook-Claim
Google+ Logo
Twitter-Logo
YouTube-Logo
Feedburner Logo
Mittwoch, 20.09.2017
Hintergrund Farbverlauf Facebook-Leiste Facebook-Leiste Facebook-Leiste
Scinexx-Logo Facebook-Leiste

Marathon der Nanosprinter

Molekulare Motoren transportieren Nanofrachten über große Entfernungen

Sie sind die Lastentransporter der Zelle: Biomolekulare Motoren, die sich entlang von Filamenten des Zellskeletts bewegen. Schon ein einziges Motormolekül reicht aus, um Vesikelbläschen oder Latexkügelchen über einige Mikrometer zu transportieren. Wissenschaftler haben jetzt gezeigt, dass bereits sieben bis acht Motormoleküle ausreichen, um Nanofrachten sogar über einige Zentimeter oder sogar Meter zu transportieren.
Zustände eines Frachtpartikels (blau) mit mehreren molekularen Motoren.

Zustände eines Frachtpartikels (blau) mit mehreren molekularen Motoren.

Molekulare Motoren sind die "Nano-Traktoren" für alle Frachten, die in den Zellen eines Organismus transportiert werden. Sie bewegen sich schrittweise entlang der Filamente des Zytoskeletts, indem sie die Energie, die durch die Hydrolyse von ATP entsteht, als eine Art Treibstoff für die Fortbewegung nutzen. Dabei bewegen sich die Motorproteine Kinesin und Dynein entlang von Mikrotubuli, Myosine dagegen entlang von Aktinfilamenten. Während die Motoren mit etwas zehn Nanometer großen „Schritten“ an den Filamenten entlang marschieren, bewegen sie Frachtpartikel, die viel größer sind als sie selbst. Neben ihrer Bedeutung für die Funktionsweise von Zellen erwarten Forscher von diesen molekularen Motoren viele Anwendungsmöglichkeiten. Als biomimetische Transportsysteme könnten sie künftig eine Schlüsselrolle in der aufkommenden Bio-Nanotechnologie einnehmen.

Transport wie auf Schienen…


Der aktive, durch molekulare Motoren angetriebene Transport ist besonders wichtig für Nervenzellen oder Neuronen. Diese Zellen besitzen lang ausgestreckte Ausläufer, so genannte Axone, die den Zellkörper mit Synapsen verbinden, die wiederum Nervensignale von einem Neuron zum anderen übermitteln. Die Länge der Axone kann mehrere Zentimeter und manchmal sogar Meter erreichen, wie jene Axone, die unsere Finger- oder Fußspitzen mit dem Rückenmark verbinden. Innerhalb dieser Axone wirken die Mikrotubuli als Schienen, auf denen dann die molekularen Motoren ihr Frachtgut - wie mit Neurotransmittern gefüllte Vesikel - transportieren.

Während des letzten Jahrzehnts ist das Wissen über molekulare Motoren stark gestiegen. Dies ist hauptsächlich der Entwicklung leistungsfähiger Einzelmolekülexperimente und biomimetischer Modellsysteme zu verdanken, die das systematische Studium molekularer Motoren außerhalb von Zellen ermöglichen. Ein Beispiel dafür ist das so genannte "bead assay"-Kügelchenexperiment, bei dem Filamente unbeweglich auf einer Oberfläche angeordnet sind und molekulare Motoren Latexkügelchen entlang dieser Filamente bewegen. Die Bewegung dieser Kugeln kann unter dem Mikroskop beobachtet werden.


…mit Trend zur „Entgleisung“


Hierbei stellte sich heraus, dass molekulare Motoren - im Unterschied zu Eisenbahnen oder Autos - die Tendenz haben, von der Schiene oder Straße abzukommen und anschließend Zufallsbewegungen in der sie umgebenden wässrigen Lösung auszuführen. Dieses Phänomen ergibt sich aus ihrer winzigen Größe im Nanometerbereich, die sie anfällig macht für thermische Störungen. Daher kann sich ein einziger molekularer Motor nur für eine relativ kurze Zeit - etwa eine Sekunde - auf dem Filament halten. Während dieser Zeit legt dieser Motor eine Entfernung von ungefähr einem Mikrometer zurück, was nur einen winzigen Teil (ca. 1/10.000) der langen Transportdistanz von Frachtpartikeln in Axonen ausmacht. Anders ausgedrückt schafft der einzelne Motor nur einen Kurzstreckensprint, während das gesamte Frachtgut einen Marathon zurücklegen muss.

Mehrere „Loks“ bleiben stabiler


Wissenschaftler des Max-Planck-Instituts für Kolloid- und Grenzflächenforschung in Potsdam haben jetzt eine einfache Lösung für dieses Rätsel gefunden. Wird die Fracht von mehreren Motoren gleichzeitig gezogen, so bleibt jeder Motor, der sich vom Filament ablöst, in dessen unmittelbarer Nähe, solange Fracht und Filament noch mit mindestens einem Motor verbunden sind. In dieser Situation ist der freie Motor in der Lage, erneut an das Filament zu binden und dann den Transport des Frachtguts fortzusetzen.

Der entdeckte Mechanismus wurde von einem neuen theoretischen Modell abgeleitet, das zwischen den verschiedenen gebundenen Zuständen der Frachtpartikel unterscheidet und die Übergänge zwischen diesen Zuständen beschreibt. Unter Benutzung dieses Modells waren die Max-Planck-Wissenschaftler in der Lage, verschiedene Transporteigenschaften, wie die durchschnittliche Geschwindigkeit oder die Lauflänge der Frachtpartikel, als Funktion der maximalen Zahl der Zugmotoren zu berechnen. Für Kinesin-Motoren zeigen diese Berechnungen, dass bereits sieben bis acht Motoren für den Transport über eine Entfernung von mehreren Zentimetern ausreichen. Ein Frachtpartikel, das von zehn Motoren gleichzeitig gezogen wird, kann sogar eine durchschnittliche Strecke von ungefähr einem Meter zurücklegen.

Bewegen sich die molekularen Motoren entgegen einer externen Lastkraft, wird diese Kraft unter den Zugmotoren aufgeteilt. In der Folge sinkt die Geschwindigkeit des Frachtguts. Darüber hinaus steigt mit der Kraft, die auf jeden Zugmotor einwirkt, die Wahrscheinlichkeit, dass sich der Motor vom Filament ablöst. Je mehr Motoren sich wiederum ablösen, desto größeren Kräften sind die verbleibenden Zugmotoren ausgesetzt, so dass die Wahrscheinlichkeit einer Ablösung immer weiter steigt. Das führt zu einer dominoartigen Abfolge von Ablöseprozessen und zu einer stark nichtlinearen Abhängigkeit der Frachtgeschwindigkeit von der externen Lastkraft. Ähnliche Dominoeffekte erwarten die Forscher bei noch komplexeren Situationen, wenn das Frachtgut von verschiedenartigen molekularen Motoren bewegt wird.

Anwendungen für Lab-on-a-Chip


Alle von der neuen Theorie vorausgesagten Transporteigenschaften lassen sich in Experimenten überprüfen, die auf bereits vorhandene Untersuchungstechniken für einzelne Motoren zurückgreifen. So stehen erste experimentelle Befunde aus dem Max-Planck-Institut für Kolloid- und Grenzflächenforschung in Übereinstimmung mit den theoretischen Voraussagen. Darüber hinaus wird die quantitative Theorie es künftig ermöglichen, biomimetische Transportsysteme für lab-on-a-chip-Anwendungen zu kreieren: So könnten molekulare Motoren ganz bestimmte Molekülen gezielt zu spezifischen Reaktionsorten auf dem Chip transportieren. Je nachdem, wie die Filamente in solchen Systemen angeordnet sind, kann man über die Variation der Laufstrecke von molekularen Transportern gezielt steuern, wie Reagenzien zu ganz bestimmten Zielorten gebracht oder alternativ verteilt werden.
(MPG, 15.11.2005 - NPO)
 
Printer IconShare Icon