• Schalter wissen.de
  • Schalter wissenschaft
  • Schalter scinexx
  • Schalter scienceblogs
  • Schalter damals
  • Schalter natur
Scinexx-Logo
Logo Fachmedien und Mittelstand
Scinexx-Claim
Facebook-Claim
Google+ Logo
Twitter-Logo
YouTube-Logo
Feedburner Logo
Freitag, 20.10.2017
Hintergrund Farbverlauf Facebook-Leiste Facebook-Leiste Facebook-Leiste
Scinexx-Logo Facebook-Leiste

Teleskop: Zwei Augen sehen mehr

"Erstes Licht" für Large Binocular Telescope

Das größte und modernste Einzelteleskop der Welt, Large Binocular Telescope (LBT) in Arizona, hat jetzt die ersten Himmelsaufnahmen geliefert. Es blickt schärfer und tiefer ins Universum als es jemals zuvor möglich war. Seine Besonderheit: Es visiert die Zielobjekte mit zwei Spiegeln gleichzeitig an.

"Zweiäugiger" Blick in den Himmel


Das Large Binocular Telescope auf dem 3.190 Meter hohen Mount Graham in Arizona gilt als eines der herausragenden wissenschaftlich-technischen Projekte der modernen astronomischen Forschung: Das völlig neuartige Fernrohr wird über zwei riesige Sammelspiegel mit jeweils 8,4 Metern Durchmesser verfügen, die, auf einer gemeinsamen Montierung installiert, gleichzeitig auf ferne Himmelskörper ausgerichtet werden, ähnlich wie ein Feldstecher.

Das Large Binocular Telescope (LBT)

Das Large Binocular Telescope (LBT)

Die Oberflächen der Spiegel sind dabei auf ein 20 Millionstel Millimeter so extrem genau poliert: Ein LBT-Spiegel - vergrößert auf die Fläche des Bodensees - hätte nur "Wellen" von einem fünftel Millimeter Höhe. Trotz ihrer Größe wiegt jeder der beiden Hauptspiegel "nur" 16 Tonnen. Die viel dickeren Spiegel klassischer Teleskope würden in dieser Dimension etwa 100 Tonnen wiegen und den Bau eines Fernrohrs dieser Größenordnung unmöglich machen.

Schärfer als Weltraumteleskop Hubble


Durch die Vereinigung der Strahlengänge der beiden Einzelspiegel sammelt das LBT so viel Licht wie ein Teleskop mit einem Spiegeldurchmesser von 11,8 Meter. Damit wird das mit einem 2,4 Meter-Spiegel ausgestattete Weltraumteleskop Hubble um den Faktor 24 übertroffen. Von noch größerer Bedeutung ist jedoch, dass das LBT dabei auch die Auflösung eines Teleskops von 22,8 Meter Durchmesser erreichen wird, weil es über die modernste adaptive Optik verfügt, bei der Bilder in einem interferometrischen Verfahren überlagert werden. Damit gelingt es den Astronomen, durch Luftturbulenzen verursachte Unschärfen in den Bildern auszugleichen und weitaus schärfer als Hublle ins Universum zu blicken.


"Das LBT wird uns völlig neue Möglichkeiten für die Erforschung von Planeten außerhalb des Sonnensystems oder zur Untersuchung der fernsten und damit jüngsten Galaxien eröffnen", sind sich Prof. Dr. Thomas Henning, Geschäftsführender Direktor am Max-Planck-Institut für Astronomie (MPIA), und Dr. Tom Herbst (MPIA), Projektwissenschaftler im deutschen Konsortium, einig. Unter Leitung des Max-Planck-Instituts für Astronomie in Heidelberg sind fünf deutsche Institute mit insgesamt 25 Prozent Beobachtungszeit am LBT-Projekt beteiligt. Dazu zählen neben dem Max-Planck-Institut für Astronomie auch die Max-Planck-Institute für extraterrestrische Physik in Garching und für Radioastronomie in Bonn, sowie das Astrophysikalische Institut Potsdam und die Landessternwarte Heidelberg.

Erste Aufnahmen überzeugen


Simulation der LBT-Leistung

Simulation der LBT-Leistung

"Was die Wissenschaftler in der nahen Zukunft an faszinierender Bildqualität erwarten können, lassen bereits die ersten LBT-Bilder erahnen", sagt Prof. Dr. Gerd Weigelt, Direktor am Max-Planck-Institut für Radioastronomie in Bonn. Obwohl die Aufnahmen zunächst "nur" mit einem der beiden Hauptspiegel gewonnen wurden, zeigen sie bereits einen beeindruckenden Blick auf ein fernes Milchstraßensystem. Bei dem als NGC891 bekannten Objekt im Sternbild Andromeda handelt es sich um eine Spiralgalaxie in 24 Millionen Lichtjahren Entfernung, welche wir - von der Erde aus - von der Seite sehen.

Die Bilder entstanden mit Hilfe der hochmodernen Large Binocular Camera (LBC), die von den italienischen Partnern des Projekts entwickelt wurde. Kamera und Teleskop wirken zusammen wie eine riesige Digitalkamera. Dank des besonders großen Gesichtsfeldes werden damit sehr effiziente Beobachtungen beispielsweise der Entstehung und Entwicklung ferner und damit lichtschwacher Galaxien möglich.

High-Tech-„Netzhaut“


Doch die LBC-Kamera ist erst der Anfang einer ganzen Reihe von High-Tech-Instrumenten, mit denen das LBT in Zukunft ausgestattet sein wird. "Ein Teleskop ohne Instrument ist wie ein Auge ohne Netzhaut", so Prof. Dr. Hans-Walter Rix, Direktor am Max-Planck-Institut für Astronomie. "Nur in Kombination mit leistungsfähigen Messinstrumenten, die mit empfindlichsten Detektoren ausgestattet sind, wird aus einem Teleskop wie dem LBT ein hochleistungsfähiges Observatorium", ergänzt der seit vielen Jahren im LBT-Projekt engagierte Wissenschaftler.

Das Herzstück des LBT ist das LINC-NIRVANA-Instrument. Es wird die Lichtbündel der beiden Hauptspiegel in einer gemeinsamen Brennebene zusammenzuführen und die durch die Erdatmosphäre verursachten Bildstörungen korrigieren. Dabei werden an die optischen, elektronischen und mechanischen Komponenten höchste Ansprüche gestellt, da Teile von LINC-NIRVANA durch seinen Einsatz im infraroten Spektralbereich auf minus 196 Grad Celsius gekühlt werden müssen, um nicht durch Wärmestrahlung der Umgebung "geblendet" zu werden.
(MPG, 27.10.2005 - NPO)
 
Printer IconShare Icon