• Schalter wissen.de
  • Schalter wissenschaft
  • Schalter scinexx
  • Schalter scienceblogs
  • Schalter damals
  • Schalter natur
Scinexx-Logo
Logo Fachmedien und Mittelstand
Scinexx-Claim
Facebook-Claim
Google+ Logo
Twitter-Logo
YouTube-Logo
Feedburner Logo
Sonntag, 28.05.2017
Hintergrund Farbverlauf Facebook-Leiste Facebook-Leiste Facebook-Leiste
Scinexx-Logo Facebook-Leiste

Mikroteilchen schwimmen gegen den Strom

Physiker entdecken paradoxe Teilchenbewegung

Wirkt eine Kraft auf einen Körper, so folgt die Bewegung des Körpers der Richtung dieser Kraft. Dieses Prinzip beschrieb Sir Isaac Newton bereits im 17. Jahrhundert. Physiker konnten nun jedoch einen Effekt demonstrieren, der das Newton'sche Gesetz zu überlisten scheint: Mikro-Kügelchen folgen nicht der an sie angelegten Kraft, sondern bewegen sich in die entgegengesetzte Richtung.
Moleküle richten sich im elektrischen Feld aus

Moleküle richten sich im elektrischen Feld aus

Kleine Teilchen zittern. Bewegungen von Kügelchen, die etwa einen Mikrometer groß sind - das entspricht dem Zehntel des Durchmessers eines Haares - und in einer wässrigen Lösung schwimmen, nennt man "Brown'sche Molekularbewegung". Oft gilt dieses Teilchenzittern als störend bei sehr sensiblen Untersuchungen und wird deswegen unterdrückt.

Die Physiker der Universität Bielefeld hingegen nutzten diese vermeintliche Störung erstmals gezielt für ihre Zwecke: In einem so genannten Lab-on-a-Chip, einem „Mini-Labor“ zur Untersuchung kleinster Flüssigkeitsmengen, gelang es ihnen, kleine Polymer-Kügelchen 'gegen den Strom' schwimmen zu lassen. Die Mikro-Kugeln folgten nicht der Richtung der Kraft, die an sie angelegt worden war, sondern bewegten sich in die entgegengesetzte Richtung. Dank der besonderen Struktur des Chips, der Brown'schen Molekularbewegung und der exakt austarierten Kraftfelder konnte so Newtons Bewegungsgesetz „überlistet“ werden.

Theoretisch war dieser Effekt - im Fachjargon "absolut negative Mobilität" genannt - in stark vereinfachten Modellsystemen zwar schon vorhergesagt worden. Die Physiker der Universität Bielefeld haben es jedoch als erste verstanden, dieses abstrakte Konzept in die Praxis umzusetzen und Möglichkeiten seiner Anwendung für die Bioanalytik aufzuzeigen.


Es ist denkbar, das Transportphänomen zu nutzen, um mit Hilfe eines Lab-on-a-Chip Zellen oder sogar Biomoleküle zu trennen und zu sortieren. Die Brown'sche Molekularbewegung geschickt auszunutzen, statt sie als Störung zu unterdrücken, eröffnet neue, aufregende Perspektiven in der Welt der Mikro- und Nanotechnologie mit faszinierenden Anwendungen. Die genauen Ergebnisse erscheinen demnächst im renommierten Wissenschaftsmagazin "Nature" unter dem Titel "Absolute negative particle mobility".
(Universität Bielefeld, 19.08.2005 - NPO)
 
Printer IconShare Icon