• Schalter wissen.de
  • Schalter wissenschaft
  • Schalter scinexx
  • Schalter scienceblogs
  • Schalter damals
  • Schalter natur
Scinexx-Logo
Logo Fachmedien und Mittelstand
Scinexx-Claim
Facebook-Claim
Google+ Logo
Twitter-Logo
YouTube-Logo
Feedburner Logo
Mittwoch, 24.05.2017
Hintergrund Farbverlauf Facebook-Leiste Facebook-Leiste Facebook-Leiste
Scinexx-Logo Facebook-Leiste

Wimmelndes Leben unter dem Meeresgrund

Mikroorganismen in der Tiefen Biosphäre besonders aktiv

Tief unter dem Meeresgrund haben Wissenschaftler eine überraschend große Anzahl von lebenden Mikroorganismen entdeckt. Bohrproben ergaben eine besonders reiche Aktivität in einer Zone in 30 und 90 Metern Tiefe. Die hier lebenden Organismen sind speziell an die eher lebensfeindlichen Bedingungen im Untergrund angepasst.
Organismen in Bohrkernprobe unter dem Mikroskop

Organismen in Bohrkernprobe unter dem Mikroskop

Mit einem großen Arsenal von modernen Analysetechniken hat ein internationales Wissenschaftlerteam aus den USA und Deutschland Bohrkerne aus dem Ostpazifik auf Lebensformen untersucht. Die Proben sammelten sie im Jahre 2002 mit dem Bohrschiff Joides Resolution aus bis zu 400 Meter Tiefe unter dem Meeresboden, also aus mehreren Millionen Jahre alten Ablagerungen. Nach mehrjähriger Analyse berichten sie jetzt in der Fachzeitschrift Nature, wie vielfältig die Lebewesen und ihre Aktivitäten dort sind. Wissenschaftler vom Bremer Max-Planck-Institut für marine Mikrobiologie waren dabei.

Leben unter Extrembedingungen


Leben kennt fast keine Grenzen. Das mussten Forscher jetzt wieder feststellen. Überall dort, wo die Zellstrukturen noch funktionieren und es Nahrung gibt, findet man Leben: auch tief unter dem Meeresgrund. Abgeschlossen und vergraben unter einer dicken Schicht Ablagerungen laufen die Prozesse in der so genannten Tiefen Biosphäre bis zu 10.000-mal langsamer ab als weiter oben.

Im Meeressediment sind zwei mikrobiologische Prozesse besonders wichtig. Der eine Prozess ist die bekannte Reduktion von Sulfat, mit dem die Bakterien Energie aus der Umsetzung von organischer Materie gewinnen. Je tiefer man bohrt, desto älter sind die Sedimente und desto weniger Sulfat findet man noch.
Der andere Prozess ist die Methanogenese, also die Entstehung von Methan als Nebenprodukt des Stoffwechsels mancher Archaeen (früher auch Archaebakterien). Diese bilden die dritte Domäne des Lebens neben der Domäne der Bakterien (Prokaryoten) und der Domäne der höheren Lebewesen wie Menschen, Tiere, Pflanzen (Eukaryoten).


Merkwürdige Methan- und Sulfatprofile


Als die Meereswissenschaftler die Bohrkerne Schicht für Schicht analysierten, fanden sie eine besondere Zone, die sich von 30 Meter bis 90 Meter Tiefe unter dem Meeresboden erstreckt. In den Proben aus dem Ostpazifik steigt die Methankonzentration in einer Tiefe von 30 bis 75 Metern stark an, um dann wieder abzufallen. Unterhalb von 90 Metern konnten die Wissenschaftler nur noch in Spuren Methan nachweisen, dafür stieg der Sulfatgehalt wieder an. Das war überraschend für die Meeresforscher.

Die Übergangszonen sind wichtig für die Lebensprozesse In der Wissenschaft ist seit ein paar Jahren ein Prozess bekannt, der Methan unter Sauerstoff-freien Bedingungen verbraucht: die anaerobe Oxidation von Methan.
Konsortien zweier verschiedener Organismen entfernen das Methan, indem sie es mit Sulfat umsetzen. Archaeen und Sulfatreduzierer haben ihre Stoffwechsel so aufeinander abgestimmt, dass sie dieses Kunststück schaffen.

Ein uralter Meeresboden liefert das Sulfat für die Lebensprozesse Am Ostpazifik haben Naturprozesse die Bühne für ein einzigartiges Experiment geschaffen. Hier schiebt sich die so genannte Nazca-Platte unter die südamerikanische Kontinentalplatte. Als Folge dieser Plattenverschiebung falteten sich die Anden auf. Vor Jahrmillionen war die Küstenlinie viel weiter draußen im Pazifik, senkte sich aber allmählich ab. Es sammelten sich viele Ablagerungen und Salze an.

Sulfat aus der Tiefe


Dieser alte Meeresboden ist jetzt die Quelle für Sulfat aus der Tiefe, mit dem die anaerobe Oxidation von Methan in der 90-Meter-Schicht am Laufen gehalten wird. Eine Bestätigung für ihre Modelle fanden die Forscher, als sie sich die Proben aus den beiden Überlappungsbereichen von Methan und Sulfat unter dem Mikroskop anschauten. Am oberen Rande der Zone (30-Meter-Bereich) und am unteren Ende (90-Meter-Bereich) zählten sie besonders viele Mikroorganismen.

Aus den Proben dieser Ausfahrt haben die Forscher schon viele Erkenntnisse gewonnen und diese in den letzten drei Jahren in Fachzeitschriften vorgestellt. Prof. Dr. Bo Barker Jørgensen, Direktor am Max-Planck-Institut für marine Mikrobiologie und Fahrtleiter an der Forschungsfahrt, plant schon die nächste Expedition: "Wir wollen verstehen, wie Leben unter diesen Extrembedingungen funktionieren kann und wo seine Grenzen sind. Immerhin steckt in der Tiefen Biosphäre fast ein Drittel aller Biomasse weltweit und wir wissen bisher noch viel zu wenig über dieses Leben. Wir finden überall dort Leben, wo es anzapfbare Energiequellen gibt."
(Max-Planck-Institut für marine Mikrobiologie, 05.08.2005 - NPO)
 
Printer IconShare Icon