• Schalter wissen.de
  • Schalter wissenschaft
  • Schalter scinexx
  • Schalter scienceblogs
  • Schalter damals
  • Schalter natur
Scinexx-Logo
Logo Fachmedien und Mittelstand
Scinexx-Claim
Facebook-Claim
Google+ Logo
Twitter-Logo
YouTube-Logo
Feedburner Logo
Samstag, 25.03.2017
Hintergrund Farbverlauf Facebook-Leiste Facebook-Leiste Facebook-Leiste
Scinexx-Logo Facebook-Leiste

Genetische Uhr tickt anders als erwartet

Mitochondriale DNA im regen Austausch

Das Erbgut in den „Kraftwerken“ der Zelle, den so genannten Mitochondrien, dient Evolutionsbiologen als genetische Uhr: Da es sich mit relativ konstanter Geschwindigkeit verändert, kann man aus der Zahl der Unterschiede ziemlich genau schließen, wann sich zwei Ethnien voneinander getrennt haben. Forscher der Universität Bonn und der Harvard Medical School haben nun eine Studie veröffentlicht, nach der die Uhr eventuell neu geeicht werden muss: Demnach tauschen die Mitochondrien ihre DNA rege untereinander aus. Die Beobachtung dürfte Stammbaumforscher deprimieren – Medizinern eröffnen sie jedoch neue Perspektiven zur Behandlung bestimmter Erkrankungen.
DNA

DNA

Mitochondrien sind die Energielieferanten des Körpers. In jeder Zelle gibt es mehrere hundert dieser Minikraftwerke, die im Unterschied zu anderen Zellorganellen ein eigenes DNA-Molekül besitzen. Vor einer Zellteilung vermehren sich auch die Mitochondrien und verteilen sich anschließend auf die Tochterzellen. „Wir haben nun festgestellt, dass die zahlreichen Mitochondrien in einer Muskelzelle ihre DNA untereinander austauschen können“, erklärt der Biochemiker Professor Dr. Wolfram S. Kunz von der Bonner Klinik für Epileptologie. „Und nicht nur das: Dieser Austausch von Erbgutsequenzen ist sogar extrem häufig.“ Bislang war strittig, ob es beim Menschen derartige „Rekombinationsereignisse“ mitochondrialer DNA überhaupt gibt.

Mutationsrate als Zeitgeber


Relevanz erhält die Beobachtung vor allem durch einen zweite Studie: Im vergangenen Jahr konnte Kunz zusammen mit Kollegen aus den USA und Dänemark in den Muskelzellen eines 28-jährigen Mannes auch mtDNA des Vaters nachweisen. Die Studie erschütterte das zentrale Dogma, nach dem sämtliche Mitochondrien eines Kindes von denen der Mutter abstammen. Auf dieser These basiert unter anderem die Arbeit von Evolutionsbiologen: Veränderungen in der mtDNA könnten demnach nämlich nicht durch die Vermischung väterlichen und mütterlichen Erbguts entstehen, sondern wären einzig und allein auf zufällige Mutationsereignisse zurückzuführen.

Nun mutiert mtDNA mit relativ hoher und sehr konstanter Geschwindigkeit. Wenn man die mtDNA zweier Ethnien miteinander vergleicht, kann man daher anhand der Anzahl von Unterschieden ziemlich genau sagen, wann sich diese Volksstämme voneinander trennten. So folgerten Stammbaumforscher beispielsweise aus genetischen Daten, dass die amerikanische Urbevölkerung am engsten mit den ersten Bewohnern Japans verwandt ist.


Genetische Uhr geht vor


Wenn aber in Einzelfällen tatsächlich auch väterliche mtDNA weitervererbt wird und zudem die verschiedenen Mitochondrien einer Zelle ihr Erbgut munter untereinander austauschen, kann sich die mtDNA plötzlich sehr schnell verändern – schneller, als die Stammbaumforscher in ihren Kalkulationen bislang zugrunde legen. „In diesem Fall müsste man die genetische Uhr entsprechend korrigieren“, sagt Professor Kunz.

Allerdings ist es wahrscheinlich eher selten, dass sich bei der Befruchtung väterliche Mitochondrien in den Embryo „einschmuggeln“: Die Eizelle enthält immerhin eine halbe Million dieser Mini-Kraftwerke, das Spermium nur einige hundert, von denen die meisten nach der Befruchtung zerstört werden. Grundsätzlich sieht Kunz den menschlichen Stammbaum daher nicht in Gefahr. „Dieser Mechanismus kann aber eventuell Ungereimtheiten erklären.“

Wege zur Gentherapie eröffnet


Als wichtiger könnten sich die Ergebnisse der aktuellen Studie einst für die Therapie bestimmter Erbkrankheiten erweisen. Mutationen der mtDNA können nämlich dazu führen, dass die Zellkraftwerke nicht richtig funktionieren. Die Auswirkungen zeigen sich besonders in Geweben, die viel Energie benötigen, also in Muskeln oder Nervenzellen. So können mitochondriale Erkrankungen bestimmte Formen der Epilepsie hervorrufen.

„Prinzipiell sollte es irgendwann einmal möglich sein, diese Krankheiten mit einer Gentherapie zu behandeln“, erläutert Professor Kunz. Denkbar wäre beispielsweise, dass die Mediziner große Mengen „gesunder“ mtDNA-Fragmente in eine Zelle einschleusen, die dann durch Genaustausch an Stelle der defekten Erbgutsequenz treten. Professor Kunz: „Ob so etwas tatsächlich funktioniert, ist aber noch reine Spekulation.“
(Universität Bonn, 22.07.2005 - NPO)
 
Printer IconShare Icon