• Schalter wissen.de
  • Schalter wissenschaft
  • Schalter scinexx
  • Schalter scienceblogs
  • Schalter damals
  • Schalter natur
Scinexx-Logo
Logo Fachmedien und Mittelstand
Scinexx-Claim
Facebook-Claim
Google+ Logo
Twitter-Logo
YouTube-Logo
Feedburner Logo
Montag, 27.03.2017
Hintergrund Farbverlauf Facebook-Leiste Facebook-Leiste Facebook-Leiste
Scinexx-Logo Facebook-Leiste

Virtuelle Hefezelle im Schock

Umfassende Simulation von Lebensprozessen gelungen

Wie verhält sich eine Zelle unter Stress? Um dies herauszufinden entwickelten Wissenschaftler ein virtuelles systembiologisches Modell einer Hefezelle und ließen sie in einer umfassenen Simulation auf veränderte Außenbedingungen reagieren.
Hefezellen

Hefezellen

In der renommierten Fachzeitschrift Nature Biotechnology präsentierte eine Gruppe von Wissenschaftlern aus Berlin und Göteborg das erste umfassende systembiologische Modell zur Beschreibung der Reaktion von Hefezellen auf veränderte Außenbedingungen. Das Modell bezieht unterschiedliche Prozesse wie Signalwege, Genexpression und Stoffwechselgeschehen, aber auch die Volumenveränderung der Zelle und die Regulation des osmotischen Druckes mit ein. Durch die Verbindung von Modell und Laborexperimenten konnten die Forscher zeigen, dass an komplexen Vorgängen in der Zelle sowohl biochemische als auch biophysikalische Prozesse beteiligt sind.

Zelle im osmotischen Schock


Wenn Hefezellen in eine Umgebung mit höherer Salz- oder Zuckerkonzentration gebracht werden, verlieren sie passiv Wasser ("osmotischer Schock"). Um dem entgegen zu wirken, akkumulieren sie in ihrem Inneren die osmotisch aktive Substanz Glyzerol. Die Produktion von Glyzerol wird über eine spezifischen Signalkette angeregt, die den sogenannten HOG-Signalweg, die Aktivierung mehrerer Gene sowie Stoffwechselveränderungen einschließt. Außerdem wird die Glyzerolansammlung durch das Schließen eines Kanals in der Zellmembran unterstützt, durch den die Substanz die Zelle normalerweise verläßt.
Wenn eine Zelle genügend Glyzerol angereichert hat, um ihren Wasserhaushalt wieder auszugleichen, setzt sie die bis dahin unterbrochenen Wachstumsprozesse fort.

Wissenschaftlern des Max-Planck-Instituts für molekulare Genetik in Berlin und der Humboldt-Universität zu Berlin ist es jetzt gelungen, diese zelluläre Reaktion auf einen osmotischen Schock mathematisch zu beschreiben und am Computer zu simulieren. Ihr zeitaufgelöstes Modell beruht auf experimentellen Daten von schwedischen Kooperationspartnern an der Universität Göteborg und der Chalmers Universität für Technologie, Göteborg. Es bezieht unterschiedliche regulatorische Daten wie die Aktivierung eines Signalweges und verschiedener Gene als auch metabolische, das heißt den Stoffwechsel der Zelle betreffende Daten mit ein.


Kein bloßes Bündel von Reaktionen


Darüber hinaus haben die Forscher die Volumenveränderung der Zelle selbst und die Regulation ihres osmotischen Druckes von biophysikalischer Seite betrachtet. Auf diese Weise konnten sie nicht nur das "Einschalten" der zellulären Reaktion auf osmotischen Stress verstehen, es gelang ihnen auch die Erklärung, warum und wie die entsprechenden Signalwege nach einer Anpassung der Zelle an die veränderten osmotischen Bedingungen wieder ausgeschaltet werden. Erste Vorhersagen der Wissenschaftler über die Reaktion der Zelle bei veränderten Situation konnten bereits experimentell bestätigt werden.

Durch die Verbindung eines Models mit experimentellen Daten konnten die Forscher nachweisen, dass sowohl biochemische und als biophysikalische Prozesse an komplexen Vorgängen in der Zelle beteiligt sind. Die vorgestellte Arbeit ist das erste umfassende Modell, das diese Zusammenhänge berücksichtigt. Gleichzeitig wiesen die Forscher nach, dass Lebensvorgänge in Zellen nicht einfach als Bündel von Reaktionen verstanden werden dürfen. Sie sind vielmehr eng an die vorhandenen physikalischen Zellstrukturen und deren Veränderungen geknüpft.
(Max-Planck-Institut für molekulare Genetik, 21.07.2005 - NPO)
 
Printer IconShare Icon