• Schalter wissen.de
  • Schalter wissenschaft
  • Schalter scinexx
  • Schalter scienceblogs
  • Schalter damals
  • Schalter natur
Scinexx-Logo
Logo Fachmedien und Mittelstand
Scinexx-Claim
Facebook-Claim
Google+ Logo
Twitter-Logo
YouTube-Logo
Feedburner Logo
Sonntag, 28.05.2017
Hintergrund Farbverlauf Facebook-Leiste Facebook-Leiste Facebook-Leiste
Scinexx-Logo Facebook-Leiste

Wolframdrähte werden berechenbar

Simulationsmodell ermittelt Lebensdauer von Glühbirnen

Kauft man eine Glühbirne, weiß man nie, wie lange sie brennen wird. Die variierende Lebensdauer wird vor allem von Mikrorissen im Wolframdraht begrenzt. Jetzt beschreibt ein Simulationsmodell für Werkstoffe die Rissbildung vor und nach dem Ziehprozess und erlaubt damit eine Abschätzung der Lebensdauer.
Mikroriss im Wolframdraht

Mikroriss im Wolframdraht

Glühbirnen leben im Dauerbetrieb idealerweise 42 Tage - wenn es nach deren Hersteller ginge. Doch in der Realität sieht es finsterer aus: Manche Birnen brennen erst nach Jahren durch, andere bereits nach ein paar Tagen. Eine einheitlichere Produktqualität vereiteln unter anderem feine Risse im Wolframdraht, die schließlich seinen Bruch verursachen. Mit diesem Problem kämpfen auch die beiden weltweit größten Glühlampenhersteller Osram und Philips.

Bisher arbeitete man in der Branche mit Versuch und Irrtum, um das Ziehverfahren für den Draht zu verbessern. Mit der Simulation des Materialverhaltens soll die Produktion gezielter als bisher nachgebessert werden. Den Rissen und nachfolgenden Schwierigkeiten beim Wendeln sind die Hersteller gemeinsam mit Forschern vom Fraunhofer-Institut für Werkstoffmechanik IWM auf der Spur. "Wenn wir die Beschaffenheit und das Verhalten des Drahtes erst einmal kennen, können wir die Produktion optimieren und standardisieren." Davon geht Bernd Eberhard, Projektleiter bei Osram, aus.

Mit 40 Mikrometern ist der Wolframfaden je nach Lampentyp im Mittel nur etwa halb so dünn wie ein menschliches Haar. Bis der Draht diesen Durchmesser erreicht hat, muss er in mehreren Schritten dünn und lang gezogen werden. Je nach Anzahl kann er dabei wenige oder viele Längsrisse bekommen. Solche Splits bilden sich vor allem während der ersten Ziehstufen, also beim Verjüngen von knapp vier Millimetern auf 0,3.


Die feinen Risse verlängern sich, wenn der Draht weiter auf bis zu fünf Mikrometer Durchmesser gezogen wird. Der Grund dafür ist die Spannung, die nach dem Ziehen im Draht bestehen bleibt, wie Fraunhofer-Projektleiter Holger Brehm und seine Mitarbeiter herausgefunden haben. "Das Verhalten des Drahts und der Risse während des Ziehprozesses und danach rechnerisch zu beschreiben, ist uns bereits gelungen. Zum ersten Mal kann der Wolframdraht während des gesamten Verjüngens am Bildschirm beobachtet werden."

Die Rissbildung wird weiter untersucht und andere dafür maßgebliche Faktoren in das Modell eingearbeitet. Ein wesentlicher ist etwa die Reibung zwischen Draht und Ziehstein. Ist sie hoch, erwärmt sich das Metall stärker. Daher integrieren die Forscher zurzeit die Temperaturveränderung während und nach dem Ziehen in die Simulation. "Der gezogene Draht kühlt sich an der Oberfläche schneller ab als in seinem Inneren", fasst Brehm die neusten experimentellen Resultate zusammen. "Auch bei diesem Prozess können leider Splits entstehen."
(Fraunhofer-Gesellschaft, 19.07.2005 - NPO)
 
Printer IconShare Icon