• Schalter wissen.de
  • Schalter wissenschaft
  • Schalter scinexx
  • Schalter scienceblogs
  • Schalter damals
  • Schalter natur
Scinexx-Logo
Logo Fachmedien und Mittelstand
Scinexx-Claim
Facebook-Claim
Google+ Logo
Twitter-Logo
YouTube-Logo
Feedburner Logo
Freitag, 20.01.2017
Hintergrund Farbverlauf Facebook-Leiste Facebook-Leiste Facebook-Leiste
Scinexx-Logo Facebook-Leiste

Pflanzenhormon steuert eigenen Transport

Neuer Regulationsmechanismus des Hormons Auxin in Pflanzenzellen nachgewiesen

Das Pflanzenhormon Auxin spielt eine entscheidende Rolle im Wachstum und der Orientierung der Pflanzen. Jetzt haben Forscher eine weitere, bisher nicht bekannte Wirkung des Hormons festgestellt: Es steuert seinen eigenen Transport.
Gedrehte Arabidopsis-Pflanze

Gedrehte Arabidopsis-Pflanze

Eine Pflanze muss an ihrem Standort von der ersten Zelle an
zurechtkommen: nach unten muss sie Wurzeln bilden, um sich im Boden zu verankern, der Stängel sollte in die entgegengesetzte Richtung wachsen, sich verzweigen, und die Blätter müssen optimal zum Licht ausgerichtet werden. Bei diesen Entwicklungsprozessen führt das Pflanzenhormon Auxin Regie. Es ist innerhalb der pflanzlichen Gewebe ungleich verteilt und gibt auf diese Weise das Signal zur Ausbildung einer Achse oder beim späteren Wachstum zur Bildung und Ausrichtung der Seitenorgane. Dabei nimmt das Hormon über eine ganze Reihe von Schritten Einfluss auf die Aktivität der Gene in den Zellen.

Tomasz Paciorek, Dr. York-Dieter Stierhof, Jürgen Kleine-Vehn, Prof. Gerd Jürgens, Dr. Niko Geldner und Dr. Jirí Friml vom Zentrum für Molekularbiologie der Pflanzen der Universität Tübingen in Zusammenarbeit mit Kollegen in Prag, von der RWTH Aachen und der britischen University of Southampton sind nun einer weiteren Wirkungsweise des Auxins auf die Spur gekommen: Das Pflanzenhormon nimmt in einer Rückkoppelungsreaktion auch auf seinen eigenen Transport Einfluss.

Der dahinter steckende zellbiologische Mechanismus, bei dem das Auxin auf den ständigen Proteinverkehr in der Zelle einwirkt, war in dieser Art bisher nur von tierischen Zellen, nicht aber von Pflanzenzellen bekannt. Die Tübinger Wissenschaftler berichten in der Fachzeitschrift Nature über ihre neuesten Forschungsergebnisse.


PIN-Proteine als Richtungsgeber


Von den PIN-Proteinen, die für den Transport des Auxins zuständig sind, gibt es mehrere unterschiedliche Typen. So findet sich PIN1 zum Beispiel unten, PIN2 oben und PIN3 seitlich in der Zelle. Sie sorgen dafür, dass das Auxin nur in einer Richtung weitertransportiert wird und sich an bestimmten Stellen konzentriert. Dadurch wird nicht nur in der einen Zelle festgelegt, wo oben und wo unten ist. Über den ungleichen Abtransport des Auxins in Nachbarzellen werden auch diese in ihrer Orientierung beeinflusst. So kann sich in vielen kleinen Schritten die Gestalt der Pflanze herausbilden. Die PIN-Proteine sitzen in der Plasmamembran, der äußeren Hülle der Zelle. Die Tübinger Forscher haben festgestellt, dass sie aber nicht unbeweglich sind.

Ständig schnüren sich Stücke der flexiblen Zellmembran nach innen ein, lösen sich als runde Vesikel ab und treiben ins Zellinnere zu den Endosomen, kleinen Zellorganen. Endocytose nennen die Wissenschaftler diesen Vorgang. Beim umgekehrten Prozess, der Exocytose, verschmelzen die Vesikel wieder mit der Zellmembran. So herrscht ein reger Verkehr, bei dem die PIN-Proteine zusammen mit weiteren Proteinen ständig zwischen der Zellmembran und den Endosomen kreisen. Das Auxin können die PIN-Proteine allerdings nur weitertransportieren, wenn sie in der Zellmembran sind.

Eingriff in Proteinverkehr


Von tierischen und menschlichen Zellen war bekannt, dass ein solcher ständiger Proteinverkehr innerhalb der Zelle bestimmten Hormonen Regulierungsmöglichkeiten bietet, zum Beispiel beim Insulin. Tatsächlich konnten die Tübinger Wissenschaftler jetzt nachweisen, dass in der Modellpflanze der Genetiker, der Ackerschmalwand (Arabidopsis thaliana), das Hormon Auxin in den ständigen Proteinverkehr eingreift. Es hemmt die Endocytose, sodass die PIN- Proteine länger in der Zellmembran bleiben und das Auxin auf diese Weise seinen eigenen Abtransport fördert.

Die Wissenschaftler stellten fest, dass bei der Wachstumsreaktion der Pflanze auf die Schwerkraft der ungleiche Auxintransport mit einem sinkenden PIN- Protein-Wechsel in Endosomen korreliert ist. Andere Pflanzenhormone als das Auxin, wie zum Beispiel Ethylen oder Gibberelline, zeigten in den Experimenten keine Wirkung auf den Proteinverkehr. Die Hemmung der Endocytose durch Auxin haben die Wissenschaftler an Mutanten der Ackerschmalwand untersucht, die im Vergleich zu den Normaltypen eine erhöhte Auxinkonzentration in den Zellen haben. Außerdem haben sie die Zellmembran mit einem fluoreszierenden Farbstoff markiert und konnten so unter dem Mikroskop die Endocytsoeaktivität in der Zelle direkt beobachten.

Damit haben die Forscher nicht nur einen weiteren Schritt im überaus komplizierten Netzwerk der Auxinwirkungen aufgeklärt, sondern auch diesen speziellen Regulationsmechanismus erstmals bei Pflanzen nachgewiesen.
(Universität Tübingen, 04.07.2005 - NPO)
 
Printer IconShare Icon