• Schalter wissen.de
  • Schalter wissenschaft
  • Schalter scinexx
  • Schalter scienceblogs
  • Schalter damals
  • Schalter natur
Scinexx-Logo
Logo Fachmedien und Mittelstand
Scinexx-Claim
Facebook-Claim
Google+ Logo
Twitter-Logo
YouTube-Logo
Feedburner Logo
Dienstag, 23.05.2017
Hintergrund Farbverlauf Facebook-Leiste Facebook-Leiste Facebook-Leiste
Scinexx-Logo Facebook-Leiste

Gehirn: Sehrinde weniger plastisch als angenommen

Langzeitbeobachtung des Gehirns mit überraschendem Ergebnis

Wie plastisch ist das Gehirn? Kann es Schäden auch im Erwachsenenalter noch ausgleichen, indem neue Nervenverbindungen wachsen oder andere Bereiche die Funktionen übernehmen? Bisher galt die Sehrinde, der Bereich, in dem visuelle Informationen verarbeitet werden, als noch plastisch. Doch neueste Studien haben diese Annahme jetzt widerlegt.
Der primäre visuelle Kortex V1

Der primäre visuelle Kortex V1

Mit ihren jüngsten, in der Zeitschrift Nature veröffentlichten Untersuchungen zur Plastizität des visuellen Kortex, haben Wissenschaftler vom Max-Planck-Institut für biologische Kybernetik in Tübingen die Debatte über das Potenzial neuronaler Reorganisation in der Hirnrinde neu entfacht. In ihren Untersuchungen an Makaken konnten die Forscher - entgegen bisherigen Vorstellungen - nach Verletzung der Netzhaut über einen Zeitraum von mehreren Monaten kein Einwachsen neuer Neuronen und damit eine entsprechende neuronale Reaktivierung entdecken.

Plastizität wichtig für Lernfähigkeit


Die Fähigkeit des sich entwickelnden Gehirns, sich an Schädigungen anzupassen, sind gut belegt. Ein Beispiel stellen Kinder dar, die in einer frühen Entwicklungsphase die linke Hirnhemisphäre verloren haben und trotzdem die Bewegungskontrolle der rechten Körperhälfte wiedererlangen und auch unter Nutzung der rechten Hemisphäre eine normale Sprachfähigkeit erreichen. Allerdings nimmt diese Plastizität im Zuge der Reifung des Gehirns weiter ab. Das zeigt sich auch deutlich beim Erlernen einer zweiten Sprache: Bis zu einem Alter von sechs Jahren - das ist das kritische Zeitfenster oder die sensible Phase - lernt ein Kind auch eine zweite Sprache als Muttersprache. Danach wird der normale Spracherwerb immer schwieriger, wie jeder bestätigen kann, der sich als Erwachsener viele Jahre lang mit dem Erlernen einer Fremdsprache abgequält hat.

Wissenschaftler vom Max-Planck-Institut für biologische Kybernetik in Tübingen haben sich nun mit der Plastizität des Sehsystems befasst. Bisher wurde angenommen, dass insbesondere die den sensorischen Systemen zugrunde liegende Verschaltungen im Kortex, also der Hirnrinde, bis ins Erwachsenenalter plastisch bleiben. Dadurch wird es möglich, dass die neuronalen Schaltpläne, von den Wissenschaftlern als kortikale sensomotorische Karten bezeichnet, kontinuierlich durch Erfahrungen verändert werden.


Diese dynamische Natur der Schaltungsanordnung in der Hirnrinde ist wichtig für das Lernen, aber auch für Reparaturen nach Verletzungen am Nervensystem, beispielsweise infolge eines Schlaganfalls. Rehabilitationsmaßnahmen nach einem Schlaganfall zielen deshalb auf die frühzeitige Förderung der Hirnplastizität. Man hofft, über die Reaktivierung funktionell gestörter, aber morphologisch intakter Hirnregionen oder durch Nutzung alternativer Strukturen des neuronalen Netzwerks bestimmte Funktionen wiederherstellen zu können.

“Topographische Karte“ nicht plastisch


Der visuelle Kortex ist in verschiedene Bereiche unterteilt. Die Region V1 spiegelt die Außenwelt so, dass jedem Punkt des externen Sehfelds ein Punkt im V1-Kortex zugeordnet ist. Wenn man ein einfaches Muster wie etwa ein Gitter betrachtet, spiegelt sich das Bild in einem dazu passenden Muster neuraler Aktivität auf der Oberfläche des Gehirns. Diese "topografischen Karten" sind, wie die Wissenschaftler vom Max-Planck-Institut für biologische Kybernetik herausgefunden haben, bei erwachsenen Makaken jedoch nicht plastisch.

Die Neurobiologen schalteten dazu einen Teilbereich der Netzhaut aus und suchten anschließend mittels Kernspintomografie (fMRT) nach Veränderungen in der kortikalen Topografie des Areals V1. Im Gegensatz zu früheren elektrophysiologischen Untersuchungen zeigt es sich, dass V1 in erwachsenen Makaken in den 7,5 Monaten nach der Netzhautläsionierung nicht an seine normale Reaktivität herankommt, und dass auch seine Topografie unverändert bleibt.

"Unsere Daten belegen, dass V1 in erwachsenen Makaken nur über ein begrenztes Potenzial für eine signifikante Reorganisation in den Monaten nach einer Netzhautläsionierung verfügt", erläutert Nikos Logothetis. "Darüber hinaus zeigt die Arbeit aber auch, dass die Kernspintomografie effektiv dazu eingesetzt werden kann, die kortikale Organisation in anästhesierten Makaken über die Zeit zu überwachen und liefert damit ein brauchbares Modell zur Erforschung der Genesung des Menschen nach einem Schlaganfall." Der Einsatz der funktionellen Magnetresonanztomografie (fMRT) in Makaken in Verbindung mit experimentellen pharmakologischen Manipulationen zur Förderung der Plastizität ist eine viel versprechende Methode auf dem Weg zu einem besseren Verständnis der neuronalen Heilungsprozesse und Reorganisation.
(MPG, 27.05.2005 - NPO)
 
Printer IconShare Icon