Anzeige
Physik

Licht legt in Flüssigkeiten immer die gleiche Strecke zurück

Experiment bestätigt scheinbar widersinnige These

In transparenten Flüssigkeiten sind Lichtpfade geradlinig - in trüben Flüssigkeiten werden sie durch Streuung komplizierter. © TU Wien

Trotz Streuung: Egal wie klar oder trüb eine Flüssigkeit ist – das Licht legt darin immer dieselbe Wegstrecke zurück. Diese scheinbar widersinnige These haben Forscher nun experimentell bestätigt. Sie zeigen: Partikel in trüben Flüssigkeiten wie Milch streuen das Licht zwar und zwingen es zu Umwegen auf seinem Weg durch das Medium. Gleichzeitig werden viele Teilchen jedoch direkt nach dem Eindringen wieder nach draußen gelenkt. Als Folge werden manche Pfade des Lichts kürzer, andere länger – ein Effekt, der sich im Mittel offenbar immer ausgleicht.

Wenn Licht in ein Glas mit Wasser fällt, durchdringt es die Flüssigkeit geradlinig und verlässt sie auf der gegenüberliegenden Seite. In einer Flüssigkeit wie Milch ist die Route dagegen komplizierter. Denn das Licht wird auf seinem Weg an winzigen Partikeln in der Flüssigkeit mehrfach gestreut: Es muss das Glas auf zackigen Bahnen durchqueren, wenn es an das gegenüberliegende Ende des Gefäßes gelangen soll. Dieser Effekt ist für die weiße Farbe der Milch verantwortlich.

Trotz der durch die Streuung verursachten Umwege legt das Licht in beiden Fällen jedoch die gleiche Strecke zurück. Diese scheinbar widersinnige These hatten Wissenschaftler um Stefan Rotter von der Technischen Universität Wien bereits vor drei Jahren aufgestellt. Nun ist es ihnen gelungen, ihre theoretische Vorhersage im Experiment zu bestätigen.

Nanopartikel im Reagenzglas

Um das Verhalten des Lichts in trüben Flüssigkeiten wie Milch nachzuahmen, vermischten die Forscher Wasser in einem Reagenzglas mit Nanopartikeln. Je mehr Partikel das Wasser enthält, umso häufiger wird das Licht auf dem Weg durch die Probe gestreut und umso milchig-trüber erscheint die Flüssigkeit.

„Wenn Licht durch diese Flüssigkeit geschickt wird, ändert sich die Streuung fortwährend, weil sich die Nanopartikel im Wasser bewegen“, erklärt Rotter. „Dadurch entsteht ein charakteristisches Glitzern auf der Oberfläche des Reagenzglases. Wenn man dieses genau vermisst und analysiert, kann man daraus auf die Weglänge schließen, die das Licht in der Flüssigkeit zurückgelegt hat.“

Anzeige
Simulationsergebnisse für Lichtpfade in kreisförmigen Scheiben mit unterschiedlicher Trübung. Das Licht trifft von links auf das Medium mit vielen verschiedenen Einfallswinkeln. © Romain Pierret & Romulo Savo

Immer gleich lang

Tatsächlich zeigte sich: Egal, ob die Wissenschaftler eine fast durchsichtige oder eine milchig-trübe Probe betrachteten – der Weg des Lichts blieb immer gleich lang. Doch wie kann das sein? Während in der durchsichtigen Probe alle Lichtteilchen die Flüssigkeit vollständig durchdringen, gibt es in der trüben Flüssigkeit auch viele Teilchen, die das Ende des Gefäßes gar nicht erst erreichen. Stattdessen werden sie bereits kurz nach dem Eindringen wieder nach außen gelenkt.

Das heißt: Die Pfade mancher Teilchen werden durch die Streuung zwar länger, andere aber auch kürzer. „Man kann mathematisch zeigen, dass sich diese beiden Effekte erstaunlicherweise genau aufheben“, erklärt Rotter. „Im Mittel ist der durchschnittliche Weg, den das Licht in der Flüssigkeit zurücklegt, immer gleich lang.“

Auch in einer Beschreibung, die das Licht nicht nur als Teilchen betrachte, sondern seinen Wellencharakter mitberücksichtige, bleibe dieser Zusammenhang bestehen. „Der zurückgelegte Weg bleibt immer gleich – unabhängig davon, wie stark die Welle im Inneren des Mediums gestreut wird“, sagt der Forscher.

Universelles Gesetz

Die Experimente bestätigen nun die mathematischen Berechnungen und könnten künftig dabei helfen, die Ausbreitung von Wellen in ungeordneten Medien besser zu verstehen. Anwendungsmöglichkeiten dafür gibt es viele. „Es ist ein universelles Gesetz, das grundsätzlich für jede Art von Welle gilt“, betont Rotter.

„Ob es Lichtwellen in einer trüben Flüssigkeit sind, ob es sich um Schallwellen handelt, die von Objekten in der Luft gestreut werden, oder auch Gravitationswellen, die eine Galaxie durchdringen – die Physik ist in allen Fällen die gleiche“, schließt der Forscher. (Science, 2017; doi: 10.1126/science.aan4054)

(Technische Universität Wien, 13.11.2017 – DAL)

Teilen:
Anzeige

In den Schlagzeilen

Diaschauen zum Thema

Dossiers zum Thema

Nanopartikel - Die unsichtbaren Helfer und ihre Schattenseiten

News des Tages

Mittelmeer

Umgekippte Erdplatte im Mittelmeer entdeckt

Wie Urzeit-Mikroben Wasserstoff spalteten

Neue Hoffnung für Voyager 1

Bücher zum Thema

Physik ohne Ende - Eine geführte Tour von Kopernikus bis Hawking von Jörg Hüfner und Rudolf Löhken

Die Geschwindigkeit des Honigs - Ungewöhnliche Erkenntnisse aus der Physik des Alltags von Jay Ingram

Top-Clicks der Woche