• Schalter wissen.de
  • Schalter wissenschaft
  • Schalter scinexx
  • Schalter scienceblogs
  • Schalter damals
  • Schalter natur
Scinexx-Logo
Logo Fachmedien und Mittelstand
Scinexx-Claim
Facebook-Claim
Google+ Logo
Twitter-Logo
YouTube-Logo
Feedburner Logo
Freitag, 24.03.2017
Hintergrund Farbverlauf Facebook-Leiste Facebook-Leiste Facebook-Leiste
Scinexx-Logo Facebook-Leiste

Knochenabbau simuliert

Computermodell enthüllt Knochenveränderungen durch Alter und Krankheit

Auch wenn es auf den ersten bLick nicht si aussieht: Auch Knochen verändern sich und sind einem ständigen Auf- und Abbau unterworfen. Max-Planck-Wissenschaftler haben jetzt im Computer simuliert, welche Knochenbauveränderungen durch Alterung und Krankheiten entstehen. Zudem kontnen sie zeigen, dass Sehnen aus zwei Arten von Faserbündeln bestehen.
Knochenstruktur

Knochenstruktur

Betrachtet man einen menschlichen Wirbelkörper, so ist dieser außen von einer kompakten Schale umgeben, während sich in seinem Inneren ein schaumartiger, so genannter trabekulärer Knochen befindet. Diese schaumartige Struktur erneuert sich ständig. Nach rund vier Jahren ist ein vollständiger Umbauprozess abgeschlossen. Der Umbau wird von spezialisierten Knochenzellen bewerkstelligt. Die Osteoklasten fressen kleine Knochenpakete von der Oberfläche ab, während die Osteoblasten neuen Knochen an der Oberfläche ablegen.

Von entscheidender Bedeutung ist, dass dieser Ab- und Anbau nicht rein zufällig geschieht, sondern - so vermutet man - von Knochenzellen innerhalb des Knochens reguliert wird. Messen diese Zellen eine starke lokale mechanische Belastung, signalisieren sie, die Struktur durch Knochenanbau zu verstärken, während nicht stark belastete Teile der Struktur getrost entfernt werden können.

Computermodell simuliert Knochenentwicklung


Basierend auf diesem Regelkreis der Zellen haben die Max-Planck-Forscher ein Computer-Modell des Knochenumbaus entwickelt. Als Modellsystem dient ein menschlicher Wirbelkörper unter äußerer vertikaler Belastung. In jedem Rechenschritt muss die lokale mechanische Belastung an den verschiedenen Teilen der schaumartigen Struktur berechnet werden. Dies wird dann in Wahrscheinlichkeiten für ein Hinzufügen oder Entfernen von Knochenmaterial an der Oberfläche umgesetzt.


Auch wenn man mit Strukturen startet, die nichts mit trabekulärem Knochen gemein haben, wie beispielsweise einem vollständig mit Knochen gefüllten Wirbelkörper, bildet sich in der Simulation sehr rasch eine schaumartige Struktur aus. Interessanterweise stellt sich in allen Simulationen mit der Zeit ein konstanter Wert für die Knochenmasse ein. Die schaumartige Struktur aber baut sich ständig um und wird in ihrer Struktur gröber, d.h. es gibt weniger, dafür aber dickere Trabekel.

Diese vergröberte Knochenstruktur kennt man von Osteoporose-Erkrankten. Bei fortschreitender Krankheit verliert man zunehmend Knochenmasse. Die neue Simulation zeigt nun, dass sich die Knochenmasse dann verringert, wenn man im Regelkreis der Zellen die Empfindlichkeit der Sensorzellen herabsetzt. Während sich also die Vergröberung der trabekulären Knochenstruktur als natürliches Alterungsphänomen interpretieren lässt, scheint der Knochenverlust mit einer Störung im Regelmechanismus in Zusammenhang zu stehen. Die weiteren Untersuchungen werden sich deshalb auf den Zusammenhang zwischen Knochenerkrankungen und Störungen in der Knochenzell-Regulation konzentrieren.

Truthahnsehne als Modell


Anhand von Truthahnsehnen haben Forscher des Max-Planck-Instituts für Kolloid- und Grenzflächenforschung in Potsdam in Kooperation mit Medizinern aus Wien und Materialwissenschaftlern aus Trieste jetzt zudem den Beweis erbracht, dass mineralisierte Sehnen aus zwei verschiedenen Sorten von Faserbündeln bestehen. Während mineralisierte Fasern dem Material Steifigkeit verleihen, verhindern weiche Fasern einen frühzeitigen Bruch. Die Untersuchung von sich dehnenden Sehnen im Röntgenlicht am Synchrotron in Trieste zeigte, dass sich die Kollagenfasern, die elementaren Bausteine von Sehnen und Knochen, ungleichmäßig verformen.

Die mineralisierte Truthahnsehne hat einen Knochen-ähnlichen, aber einfacheren Aufbau. Das Grundmaterial Kollagen findet man dort in Form von weichen, organischen Fasern und verstärkt durch steife, anorganische Mineralpartikel genau wie im Knochen. Hingegen ist die Anordnung im Wesentlichen eindimensional, da sich Kollagenfasern zu Kollagenbündeln und schließlich zur Sehne in jeweils parallelen Anordnungen zusammenschließen. Das erleichtert die Interpretation von Messergebnissen an Sehnen erheblich.

Zwei Komponenten entdeckt


In den Experimenten an der Sychrotronquelle ELETTRA in Trieste (Italien) wurde eine Truthahnsehne im Röntgenstrahl gedehnt und simultan die Streuung des Strahls an der Sehne gemessen. Durch die periodische Anordnung der Kollagenmoleküle kommt es im Streusignal zu so genannten Bragg-Reflexen. Die Aufspaltung dieser Reflexe bei großer Dehnung der Sehne zeigt, dass sich diese überraschenderweise nicht gleichmäßig verformt, sondern offenbar aus zwei Komponenten besteht. Während die eine Komponente stark gedehnt wird, bleibt die andere ungedehnt.

In Kombination mit Untersuchungen am Elektronenmikroskop ergibt sich folgender Befund: Die mineralisierte Truthahnsehne ist ein Komposit, bestehend aus Faserbündeln mit stärkerer Versteifung durch Mineralpartikel sowie aus Bündeln, die wegen ihrer geringeren Mineralisierung weicher und daher dehnbarer sind. Wird die Sehne gedehnt, sorgt die hoch mineralisierte Komponente für eine hohe Steifigkeit bei kleinen Dehnungen. Bei größerer Dehnung brechen diese spröden Faserbündel jedoch und relaxieren in einen ungedehnten Zustand zurück. Die Last muss nun von den weicheren Fibrillen getragen werden, die allerdings äußerst dehnbar sind und somit den strukturellen Zusammenhalt der Sehne gewährleisten.

Ein einfaches Zusatzexperiment unterstrich die Richtigkeit der Interpretation: Wird eine Sehne über den Punkt gedehnt, an dem die spröden Faserbündel brechen, und dann entlastet und erneut belastet, sollten die gebrochenen Fasern nicht mehr zur Steifigkeit beitragen. Genau diese signifikante Reduktion der Steifigkeit der Sehne haben die Forscher auch beobachtet.
(MPG, 12.01.2005 - NPO)
 
Printer IconShare Icon