• Schalter wissen.de
  • Schalter wissenschaft
  • Schalter scinexx
  • Schalter scienceblogs
  • Schalter damals
  • Schalter natur
Scinexx-Logo
Logo Fachmedien und Mittelstand
Scinexx-Claim
Facebook-Claim
Google+ Logo
Twitter-Logo
YouTube-Logo
Feedburner Logo
Samstag, 25.11.2017
Hintergrund Farbverlauf Facebook-Leiste Facebook-Leiste Facebook-Leiste
Scinexx-Logo Facebook-Leiste

Ein Rezept für wirksame Antibiotika?

Forscher liefern "Bauplan" für vielversprechende Wirkstoff-Kandidaten

Bakterien den Garaus machen: Das kann Antibiotika nur gelingen, wenn sie ins Zellinnere der Keime vordringen. Forscher haben nun herausgefunden, welche Eigenschaften chemischen Verbindungen diese wichtige Fähigkeit verleihen. Im Experiment hat sich ihr "Bauplan" bereits bewährt. Durch gezielte Modifikationen veränderten sie einen Wirkstoff gegen grampositive Bakterien so, dass er auch die nur schwer zu durchdringende Zellwand gramnegativer Erreger meisterte. Künftig könnten die Ergebnisse bei der Suche nach neuen Antibiotika helfen, schreibt das Team im Fachmagazin "Nature".
Diese multiresistenten Staphylococcus aureus (MRSA) sind nur ein Beispiel von vielen gegen Antibiotika resistenten Bakterien

Diese multiresistenten Staphylococcus aureus (MRSA) sind nur ein Beispiel von vielen gegen Antibiotika resistenten Bakterien

Antibiotika galten lange als die beste Waffe der Medizin gegen bakterielle Erreger. Mittlerweile werden viele dieser Mittel jedoch zunehmend unwirksam. Denn weltweit entwickeln immer mehr Keime Resistenzen dagegen - auch bei uns in Europa. Viele Bakterien, darunter der Krankenhauskeim MRSA oder die ESBL-Bakterien, sind sogar schon gegen mehrere Wirkstoffklassen immun. Angesichts dieser Entwicklung hat die Weltgesundheitsorganisation erst kürzlich eindringlich zur Erforschung neuer Alternativen aufgerufen.

Doch die Suche nach potenziellen Antibiotika gestaltet sich schwierig. Vor allem gegen gramnegative Bakterien wie Escherichia coli oder Pseudomonas aureginosa gibt es kaum vielversprechende Kandidaten. Das Problem: Ihre äußere Zellmembran ist - anders als bei grampositiven Keimen - so beschaffen, dass sie für Wirkstoffe kaum zu durchdringen ist. "Mittel, denen dies doch gelingt, verschaffen sich meist über ein bestimmtes Türchen in der Membran Zugang: ein sogenanntes Porin", sagt Paul Hergenrother von der University of Illinois in Urbana. Es seien jedoch nur eine Handvoll von Wirkstoffklassen bekannt, denen der Zugang auf diese Weise gelingt.

Moleküle im Test


Der Wissenschaftler und seine Kollegen um Studienleiterin Michelle Richter haben nun systematisch untersucht, welche Eigenschaften eine chemische Verbindung benötigt, um die Hürde zu passieren und es ins Innere der Erreger zu schaffen. Kurzum: Welche Formel könnte zu erfolgreichen Antibiotika gegen gramnegative Bakterien führen? Um das herauszufinden, testete das Team zunächst eine Vielzahl komplexer Moleküle exemplarisch am E. coli-Keim. Die Wirkstoffe stammten ursprünglich von Pflanzen oder Mikroben aus der Natur, waren aber im Labor modifiziert worden.


Tatsächlich drangen nur wenige Testkandidaten erfolgreich ins Zellinnere der Bakterien vor. Alle, die es schafften, hatten jedoch einen bestimmten Aspekt in ihrem Bauplan gemeinsam: "Sie besaßen Amine - also molekulare Bestandteile, die das Element Stickstoff enthalten", berichtet Hergenrother. Allerdings: Umgekehrt gelang nicht allen Wirkstoffen mit Aminen der Weg ins Innere der Keime. Was unterschied die erfolgreichen von den erfolglosen Kandidaten?

Der modifizierte Wirkstoff 6DNM-Amin

Der modifizierte Wirkstoff 6DNM-Amin

Drei Schlüsseleigenschaften


Dieses Rätsel lösten die Forscher mithilfe einer Computeranalyse. Dabei stellte sich heraus: Es scheint drei Schlüsselelemente zu geben, die allen vielversprechenden Kandidaten gemein sind. Erstens muss im Wirkstoff ein Amin in einer bestimmten Konfiguration vorliegen. Zweitens sollte die Substanz fest statt labberig sein, damit sie nicht in der Porin-Tür hängen bleibt. Drittens sollte sie eine geringe Globularität aufweisen. "Das bedeutet einfach gesprochen, sie muss eine eher flache und keine kugelförmige Struktur haben", schreibt das Team.

Wie zielführend die ermittelten Richtlinien bei der Fahndung nach geeigneten Wirkstoffen sind, testeten Hergenrother und seine Kollegen mithilfe eines Experiments: Sie versuchten eine gegen grampositive Bakterien wirksame Verbindung so umzubauen, dass sie auch gegen gramnegative Erreger wie Escherichia coli aktiv ist.

Ihre Wahl fiel dabei auf Deoxynybomycin (DNM) - ein Stoff, der grampositiven Keimen den Garaus machen kann und außerdem bereits zwei der drei erforderten Kriterien erfüllt. Lediglich das Amin fehlt dem Molekül. Für ihren Versuch fügten die Forscher die benötigte Aminogruppe der Verbindung an der richtigen Position hinzu und machten die Probe aufs Exempel - mit Erfolg. Die neue Substanz "6DNM-Amin" zeigte sich auch gegen gramnegative Bakterien aktiv und ist damit ein potenzielles Breitbandantibiotikum.

Nur ein Etappenziel


Das Entscheidende für die Wissenschaftler ist jedoch nicht die Kreation dieser neuen Verbindung: "Ob sie überhaupt gut für den Einsatz beim Menschen geeignet ist, muss sich noch zeigen", sagt Hergenrother. "Wichtiger ist, dass wir jetzt die Mechanismen verstehen und wissen, wie wir Verbindungen gestalten können, die es mit hoher Wahrscheinlichkeit ins Innere von Erregern schaffen."

Das allerdings ist nur das erste Etappenziel auf dem Weg zu einem effektiven Antibiotikum. Denn nur ein Medikament, das ins Zellinnere vordringen kann, ist zwar potenziell ein gutes Medikament. Doch längst nicht alle Moleküle mit dieser Fähigkeit sind dann auch wirklich gegen das Bakterium aktiv. Laut den Forschern schafft es nur rund eines von 200 zufällig gewählten Verbindungen, die in einen gramnegativen Keim eindringen können, diesen auch zu töten. "Aber das sind Wahrscheinlichkeiten, mit denen man arbeiten kann", schließt Hergenrother. (Nature, 2017; doi: 10.1038/nature22308)
(University of Illinois, 11.05.2017 - DAL)
 
Printer IconShare Icon