• Schalter wissen.de
  • Schalter wissenschaft
  • Schalter scinexx
  • Schalter scienceblogs
  • Schalter damals
  • Schalter natur
Scinexx-Logo
Logo Fachmedien und Mittelstand
Scinexx-Claim
Facebook-Claim
Google+ Logo
Twitter-Logo
YouTube-Logo
Feedburner Logo
Freitag, 26.05.2017
Hintergrund Farbverlauf Facebook-Leiste Facebook-Leiste Facebook-Leiste
Scinexx-Logo Facebook-Leiste

Neuartiger Mikroprozessor ist nur drei Atome dick

Ultradünnes Material könnte Alternative zu Silizium-Chips bieten

Nur drei Atomlagen dick: Aus "zweidimensionalen" Schichten haben Forscher erstmals einen eigenständig funktionierenden Mikroprozessor hergestellt. Die mit Molybdändisulfid realisierten Prozessoren sind extrem flexibel und können viel kleiner produziert werden als herkömmliche integrierte Schaltkreise. Sie könnten daher die bald an ihre Grenzen stoßenden Silizium-Prozessoren ablösen.
Neben den 15 eigentlichen Mikroprozessoren sind diverse Teststrukturen auf dem Chip.

Neben den 15 eigentlichen Mikroprozessoren sind diverse Teststrukturen auf dem Chip.

Im Zeitalter von Computern und Smartphones sind Mikroprozessoren heute allgegenwärtig und werden ständig weiterentwickelt. Von Beginn an ist der Halbleiter Silizium das Material der Wahl, wenn es um deren Produktion geht. Doch im Zuge der fortschreitenden Miniaturisierung der Schaltkreise stößt dieser allmählich an seine physikalischen Grenzen.

Materialien, die nur aus wenigen Atomlagen bestehen, sogenannte 2D-Materialien, könnten nach Ansicht vieler Forscher die weitere Verbesserung der Prozessortechnologie in Zukunft sichern. Ein Kandidat dafür ist das Material Graphen. Doch bisher wurden damit nur einzelne digitale Bauelemente aus einigen wenigen Transistoren realisiert.

Ein einzelner Mikroprozessor besteht aus sechs Funktionselementen wie Kontrolleinheit (CU) und Recheneinheit (ALU).

Ein einzelner Mikroprozessor besteht aus sechs Funktionselementen wie Kontrolleinheit (CU) und Recheneinheit (ALU).

Alternative zu Silizium


Mit Molybdändisulfid (MoS2) haben Thomas Müller und sein Team von der Technischen Universität Wien nun einen anderen aussichtsreichen Kandidaten untersucht. Das Material zählt zu den Halbleitern, hat also ähnliche elektrische Eigenschaften wie das bisher gebräuchliche Silizium.


Durch Aufdampfen einzelner Atome auf einen Träger haben die Forscher eine nur drei Atome dünne Schicht aus MoS2 hergestellt und in einen Mikroprozessor eingearbeitet. "Das Resultat ist ein 1-Bit Mikroprozessor, der aus 115 Transistoren besteht und die komplexeste Schaltung darstellt, die bislang aus einem zweidimensionalen Material gefertigt wurde", berichten die Forscher.

115 Transistoren auf 0,6 Quadratmillimetern


"Während das im Vergleich mit Industriestandards auf Basis von Silizium natürlich äußerst bescheiden wirkt, ist es doch ein großer Durchbruch für dieses Forschungsfeld", sagt Müllers Kollege Stefan Wachter. "Der Nachweis der Machbarkeit ist geschafft, einer Weiterentwicklung steht im Prinzip nichts im Weg."

Die bislang hergestellten Prototypen wurden noch in mühevoller "Handarbeit" im Labor gemacht, erklärt Müller. Die größte Herausforderung sei momentan die Reproduzierbarkeit. "Zwar können wir einzelne Bauteile mit weitgehend niedriger Fehlerquote herstellen, aber die enorme Komplexität eines kompletten Mikroprozessors führt letztlich dazu, dass nur etwa ein Prozent der fertigen Geräte einwandfrei arbeitet", räumen die Forscher ein.

Biegsame Displays


Um mit den heutigen Prozessoren mit ihren tausenden oder gar Millionen Transistoren mithalten zu können, steht den Wissenschaftlern noch viel Arbeit bevor. Mit industriellen Methoden könnten jedoch in den nächsten Jahren durchaus einige neue Anwendungsgebiete für diese Technologie entstehen, sind die Forscher überzeugt.

Ein Beispiel für ein solches wäre flexible Elektronik, wie sie für medizinische Sensoren oder biegsame Displays benötigt wird. Hier sind die 2D-Materialien dem klassischen Silizium aufgrund ihrer deutlich größeren mechanischen Flexibilität weit überlegen. (Nature Communications, 2017; doi: 10.1038/ncomms14948)
(Technische Universität Wien, 12.04.2017 - CLU)
 
Printer IconShare Icon