• Schalter wissen.de
  • Schalter wissenschaft
  • Schalter scinexx
  • Schalter scienceblogs
  • Schalter damals
  • Schalter natur
Scinexx-Logo
Scinexx-Claim
Facebook-Claim
Google+ Logo
Twitter-Logo
YouTube-Logo
Feedburner Logo
Samstag, 25.06.2016
Hintergrund Farbverlauf Facebook-Leiste Facebook-Leiste Facebook-Leiste
Scinexx-Logo Facebook-Leiste

Wie die Tiere Köpfe bekamen

500 Millionen Jahre alte Gehirn-Fossilien zeigen entscheidende Entwicklungsschritte

Entscheidender Übergang: Zwei 500 Millionen Jahre alte Fossilien zeigen, wie aus formlosen Weichtieren die ersten Gliederfüßer mit Köpfen entstanden. Sie gehören auch zu den ältesten bekannten Fossilien mit erkennbarem Gehirn, berichtet ein britischer Paläontologe. Damit zeigen sie nicht nur entscheidende Übergänge in der Evolutionsgeschichte moderner Insekten und Krebse, sondern auch für die Struktur aller Tierkörper, schreibt der Wissenschaftler im Magazin "Current Biology".
Fossil von Odaraia alata, einem frühen Gliederfüßer aus dem Kambrium.

Fossil von Odaraia alata, einem frühen Gliederfüßer aus dem Kambrium.

Während der sogenannten Kambrischen Explosion vor rund 500 Milllionen Jahren legte das Leben auf der Erde schlagartig zu: Fossilien aus dieser Zeit zeigen eine gewaltige Menge an Tierarten, die zuvor nicht existierten und sich in relativ kurzer Zeit entwickelten. In dieser Epoche tauchten in den Meeren auch die ersten Vorläufer der Krustentiere auf – geradezu revolutionäre Lebewesen mit harter Schale. In der Zeit vor dem Kambrium ähnelten die meisten Tiere den weichen Quallen oder Mikroalgen.

Von weich nach hart


Einen wichtigen Schritt auf dem Weg von diesen formlosen Weichtieren hin zu den strukturierten Körpern unserer Zeit, insbesondere der Entstehung des Kopfes, hat Javier Ortega-Hernández von der University of Cambridge nun aufgeklärt. Er studierte zwei Fossilien aus der Zeit der Kambrischen Explosion: einen weichen Trilobiten und eine bizarre Kreatur namens Odaraia alata. Dieses Tier verfügte bereits über den Körperbau eines Gliederfüßers und erinnert an eine Languste.

Trotz ihrer Unterschiede hatten die beiden Tiere einiges Gemeinsam, wie die Fossilien belegen: Beide hatten am vorderen Ende ihres Körpers eine verhärtete Platte, den sogenannten vorderen Skleriten. Darin eingebettet befinden sich augenähnliche Organe. Spuren von Nerven deuten auf eine Verbindung zum vorderen Bereich des Gehirns hin. In dieser Hirnregion liegt bei modernen Gliederfüßern wie Krebsen oder Insekten das Sehzentrum.


Mehr als Kopf und Hirn


Die beiden Fossilien aus dem kanadischen Burgess-Schiefer sind ein echter Glücksfall: Selbst unter den hervorragenden Bedingungen dieser Fundstätte sind so gut erhaltene Gehirne kein häufiger Fund. Derart weiches Gewebe bleibt nur selten erhalten. Die nun beschriebenen Fossilien zeigen jedoch nicht nur einige der ältesten bekannten Gehirne, sie gehören auch zu dem am besten erhaltenen.

Vorfahren der Gliederfüßer: Modell von Laggania cambria, einem Vertreter der Anomalocarididen.

Vorfahren der Gliederfüßer: Modell von Laggania cambria, einem Vertreter der Anomalocarididen.

Die Fossilien zeigen jedoch nicht nur frühe Kopf- und Hirnstrukturen. Sie belegen Ortega-Hernández zufolge auch einen weiteren wichtigen Entwicklungsschritt: "Was wir hier sehen, ist die Antwort darauf, wie die Gliederfüßer ihre Körper von weich nach hart veränderten." Denn die neuen Erkenntnisse erlaubten auch einen Vergleich mit einer weiteren Tiergruppe, den Anomalocarididen. Diese gelten als Vorfahren der Gliederfüßer, also aller modernen Insekten, Krustentiere und Spinnen. Die Anomalocarididen ähnelten ein wenig riesigen Garnelen mit bis zu zwei Metern Länge. Im Kambrium standen sie wahrscheinlich an der Spitze der Nahrungskette.

"Eine entscheidende Epoche der Veränderung"


Bei Fossilien dieser Tiere fanden die Forscher Strukturen, die noch Reste des vorderen Skleriten enthielten – jener frühen Form von harter Kruste, die die ersten beiden Fossilien auszeichnete. In den Außenskeletten heutiger Tiere lässt sich diese Struktur nicht mehr finden: "Der vordere Sklerit ist in modernen Gliederfüßern verloren gegangen, da er wahrscheinlich während der Evolution dieser Gruppe mit anderen Teilen des Kopfes verschmolzen ist", erklärt Ortega-Hernández.

"Was wir an diesen Fossilien sehen ist einer der großen Übergänge zwischen wurmartigen Tieren mit weichen Körpern und Gliederfüßern mit hartem Außenskelett und Gliedmaßen mit Gelenken", fasst der Paläontologe zusammen. "Das gibt uns ein besseres Verständnis der Ursprünge und der komplexen Evolutionsgeschichte dieser höchst erfolgreichen Organismengruppe", so Ortega-Hernández. "Dies war eine entscheidende Epoche der Veränderung." (Current Biology, 2015; doi: 10.1016/j.cub.2015.04.034)
(University of Cambridge, 11.05.2015 - AKR)