Anzeige
Physik

Physik: Quantensprung in der Messempfindlichkeit gelungen

Anziehungskräfte zwischen Xenonatomen und Iridium-Oberfläche untersucht

Einer Forschergruppe der Universität Marburg ist es gelungen, die Anziehungskräfte zwischen einer einschichtigen Lage von Xenonatomen und einer Iridium(111)-Oberfläche hundert Mal genauer zu vermessen als bisher. Der Experimentalphysiker Professor Heinz J. Jänsch setzte dazu die Kernspinresonanzspektroskopie (NMR, nuclear magnetic resonance) ein, kombinierte sie mit einer optischen Methode und erhielt so hunderttausendfach stärkere Messsignale als üblich. „Damit haben wir einen Quantensprung in der Empfindlichkeit vollzogen“, so der Marburger Professor, „der absolut notwendig für die jetzt erzielten Resultate war.“

Die auf neuartigem experimentellem Wege gewonnenen Erkenntnisse von Jänsch und seinen Kollegen Peter Gerhard und Matthias Koch weisen nun auf Schwierigkeiten in der so genannten Dichte-Funktional-Theorie hin, mit der Oberflächenphysiker die Eigenschaften von Festkörpern beschreiben, und können dazu beitragen, diese zu verbessern.

Dies hätte ganz praktische Auswirkungen: Die schwachen Anziehungskräfte auf atomarer Ebene erklären beispielsweise, wie es einem Gecko gelingt, Wände hoch zu laufen, warum Farbe auf einer Wand hält oder wie groß die mechanische Stabilität vieler Plastikwerkstoffe ist. Das genaue Wissen um diese Kräfte könnte bei der Entwicklung von Stoffen helfen, die besonders gut oder eben gar nicht aneinander haften. „Theoretisch ist schon seit den 1930er Jahren bekannt, wie man die Wechselwirkungen zwischen einem Metall wie Iridium und den chemisch so wenig reaktiven Xenonatomen beschreiben kann“, erläutert Jänsch. „Die dazu erforderlichen Berechnungen sind jedoch selbst im Computerzeitalter noch zu umfangreich.“ Seine experimentellen Ergebnisse könnten dazu beitragen, die bisher üblichen Näherungsverfahren zu verbessern und so die schwachen Anziehungskräfte zwischen Atomen und Molekülen an der Oberfläche von Festkörpern besser zu beschreiben.

Zähmung der Widerspenstigen

Der Schlüssel zum Erfolg lag darin, die Xenonkernmagnete erstens in großer Zahl in dieselbe Richtung auszurichten, zu polarisieren, und sie zweitens auf einen hochpolierten Iridiumblock (einen Kristall) aufzudampfen, statt – wie üblich – Iridiumpulver zu verwenden.

Bei der Polarisierung werden die magnetischen Momente möglichst vieler Xenonatomkerne herkömmlicherweise durch ein angelegtes Magnetfeld in dieselbe Richtung ausgerichtet. „Die Kernmagnete sind allerdings so klein, dass auch starke Magnetfelder sie kaum beeindrucken“, erklärt Jänsch. „Das ist vergleichbar mit einem Tischtennisball, auf den mit einem Filzschreiber ein Punkt gemalt wurde. Obwohl der Ball an diesem Punkt schwerer ist, würde er sich, auf ein Rüttelbrett gelegt, doch nicht mit dem Punkt nach unten ausrichten.“

Anzeige

Dieses Problem löste Jänsch durch den Einsatz der Methode des „optischen Pumpens“ mit Hilfe eines Lasers. Damit erreichte er, dass in seiner Versuchsanordnung bis zu neunzig Prozent der Atome gleich ausgerichtet sind. „Das ist ein hervorragender Wert, vielleicht sogar Weltrekord“, so Jänsch. Eine hohe Polarisation ist Voraussetzung, um schwache Signale nachzuweisen; bei vergleichbaren Messungen ist meist nur etwa ein Hunderttausendstel der Atome polarisiert. „Ein weiterer Clou an der Sache ist“, erklärt Jänsch weiter, „dass die Atome, einmal ausgerichtet, sehr resistent gegen äußere Einflüsse sind. Wir können das ausgerichtete Xenongas sogar einfrieren und für spätere Versuche aufheben.“

Diese Vorbereitungen ermöglichten es schließlich auch, für die Messungen einen hochpolierten Iridiumkristall einzusetzen. Normalerweise wird der Nachteil der geringen Polarisation durch die große Oberfläche von Iridiumpulver ausgeglichen. Dabei aber muss in Kauf genommen werden, dass das Pulver im Vergleich zu einem polierten Kristall sehr inhomogen ist – „etwa wie ein lupenreiner Diamant im Vergleich zu Schmirgelstaub,“ so Jänsch. Die hohe Polarisation der Xenonatome indessen macht die große Oberfläche überflüssig: Weil der Kristall nicht in viele verschiedene Richtungen zeigt, werden die Messergebnisse nicht „verwischt“, wie das bei Pulver der Fall ist. Auf dem Iridiumkristall lassen sich etwa einhundert mal „schärfere“ Ergebnisse als auf Pulver gewinnen. Auf diese Weise konnten Signalpositionen und relevante Verschiebungen erstmals überhaupt gemessen werden.

Weniger als vorhergesagt

Untersucht wurde nun die so genannte van-der-Waals-Wechselwirkung zwischen Xenonatomen und den im Metallgitter gebundenen Iridiumatomen. Diese Wechselwirkung entsteht, weil sich Elektronen in beiden Atomsorten so verschieben, dass es zu einer schwachen elektrischen Anziehungskraft kommt (die auch dazu beiträgt, dass das Edelgas auf dem Metall „haften“ bleibt). Zur Messung dieser Anziehungskraft untersuchte Jänsch die Xenonkerne mittels Kernspinresonanzspektroskopie. Dabei wird ein äußeres Magnetfeld angelegt und geprüft, auf welcher Frequenz die Xenonkerne „mitschwingen“. Die Elektronen innerhalb der Atomhüllen jedoch beeinflussen dieses Magnetfeld ebenfalls, sodass die Kerne schließlich nur ein verändertes „lokales“ Magnetfeld spüren. Die Differenz zwischen äußerem und lokalem Magnetfeld, die „chemische Verschiebung“, ist nun das eigentliche Messergebnis, das die Forscher sehen wollten.

Diese Verschiebung, so konnte Jänsch schließlich zeigen, ist um den Faktor zehn kleiner als es die Dichte-Funktional-Theorie vorhersagt. „Wenn die Xenonatome auf dem Metall sitzen, geht die Ausrichtung ihrer Kerne mit der Zeit verloren. Den Prozess nennt man Relaxation und die dafür nötige Zeit: Relaxationszeit. Anfänglich wollten wir unser Experiment gar nicht machen, da die theoretische Vorhersage für die Relaxationszeit einfach zu kurz war. Ein Glück, dass wir es dennoch wagten,“ so Jänsch. Auch bei der Berechnung der Relaxationszeit zeigt die Theorie deutliche Defizite, in Jänschs Fall sagte sie zu kleine Werte voraus. Der Grund für die Abweichung von den theoretischen Vorhersagen liegt Jänsch zufolge darin, dass die „Vermischung“ der Iridiumelektronen mit den Xenonelektronen noch nicht richtig verstanden ist. „Nun liegt der Ball wieder im Feld der Theoretiker“, so Jänsch schmunzelnd.

Weitere Experimente geplant

Die ungewöhnliche Messung führte Jänsch bisher nur an Iridium durch.

Oberflächen verschiedener Festkörper sind aber sehr verschieden, daher sind Experimente an Kupfer und Silizium in Vorbereitung. Eine erhebliche Ausweitung der Messmöglichkeiten kann erreicht werden, wenn nicht nur das aufgedampfte Xenon, sondern auch die unterliegende Oberfläche mit Hilfe der Kernresonanz untersucht werden kann. Hierzu sind weitere Arbeiten notwendig. „Lohnend ist diese Grundlagenforschung allemal“, erwartet Jänsch, „denn sie wird unser Verständnis der schwachen Anziehungskräfte, die uns alle umgeben, weiter verbessern.“

Die Forscher berichten in den Proceedings of the National Academy of Sciences (PNAS) über ihre Ergebnisse.

(idw – Philipps-Universität Marburg, 02.11.2004 – DLO)

Teilen:
Anzeige

In den Schlagzeilen

News des Tages

Blutstropfen auf Fingerkuppe

Neues Diagnose-Verfahren erkennt zahlreiche Krebsarten

Wie KI das Internet schneller macht

Robo-Spinne soll Marshöhlen erkunden

Wie man beim Dart gewinnt

Diaschauen zum Thema

keine Diaschauen verknüpft

Dossiers zum Thema

Bücher zum Thema

Nanotechnologie und Nanoprozesse - Einführung, Bewertung von Wolfgang Fahrner

Der Teil und das Ganze - Gespräche im Umkreis der Atomphysik von Werner Heisenberg

Top-Clicks der Woche