• Schalter wissen.de
  • Schalter wissenschaft
  • Schalter scinexx
  • Schalter scienceblogs
  • Schalter damals
  • Schalter natur
Scinexx-Logo
Logo Fachmedien und Mittelstand
Scinexx-Claim
Facebook-Claim
Google+ Logo
Twitter-Logo
YouTube-Logo
Feedburner Logo
Dienstag, 25.07.2017
Hintergrund Farbverlauf Facebook-Leiste Facebook-Leiste Facebook-Leiste
Scinexx-Logo Facebook-Leiste

Braune Zwerge als Geburtsstätte von Planeten?

Erstmals beobachten Forscher Staubkörner in der Umgebung eines „gescheiterten Sterns“

Möglicherweise könen auch um Braune Zwerge Planeten entstehen: Einen internationalen Astronomenteam ist es gelungen millimetergroße Körner in den Staubscheiben solcher gescheiterter Sterne zu beobachten. Diese gelten als Ursprung der Entstehung von Gesteinsplaneten. Bisher war man davon ausgegangen, dass es solche Staubteilchen nur um echte Sterne herum gibt. Die Beobachtungen stellen daher nach Ansicht von Luca Ricci vom California Insitute of Technology und seinen Kollegen bisherige Theorien der Planetenbildung in Frage. Die detaillierten Beobachtungen der Forscher wurden durch das neue Teleskopsystem ALMA (Atacama Large Millimeter/ submillimeter Array) möglich, wie die Forscher im Fachmagazin "Astrophysical Journal Letters" berichten.
Illustration eines Braunen Zwerges

Illustration eines Braunen Zwerges

Astronomen gehen davon aus, dass Gesteinsplaneten durch zufällige Kollisionen und das „Zusammenkleben“ von Material in den Scheiben um junge Sterne entstehen. Ihre grundlegenden Bausteine sind demnach mikroskopisch kleine Staubteilchen in diesen Scheiben. Dieser kosmische Staub ähnelt extrem feinem Sand oder Ruß. In den äußeren Bereichen der Scheiben um Braune Zwerge – sternähnliche Objekte mit zu geringer Masse, um nennenswerte Leuchtkräfte zu entwickeln – erwarteten die Astronomen jedoch, dass derartige Körner gar nicht erst entstehen können. Die Scheiben sollten zu dünn und außerdem die Geschwindigkeit der Partikel viel zu groß sein, um nach Kollisionen aneinander haften zu bleiben. Außerdem sagen gängige Theorien voraus, dass die Körner – selbst, wenn sie sich doch bilden könnten - sehr schnell nach innen in Richtung des Braunen Zwerges wandern würden. In den äußeren Bereichen der Scheibe würde man sie also nicht mehr nachweisen können.

„Es war für uns völlig überraschend, in dieser kleinen Scheibe millimetergroße Staubkörner zu finden”, berichtet Luca Ricci vom California Institute of Technology in den USA, der das Team von Wissenschaftlern aus den Vereinigten Staaten, Europa und Chile leitete, dem die Entdeckung gelang. „Feste Körner dieser Größe sollten sich eigentlich in den kalten äußeren Bereichen einer Scheibe um einen Braunen Zwerg gar nicht bilden können. Dennoch sieht es so aus, als ob genau das passiert. Wir können zwar nicht mit Sicherheit sagen, ob sich dort auch ein ganzer Gesteinsplanet bilden könnte – oder sich sogar schon gebildet hat. Aber zumindest sehen wir die ersten Schritte auf dem Weg dahin. Dementsprechend werden wir unsere Annahmen zu den Bedingungen, unter denen feste Körper wachsen können, ändern müssen.“

Neues Teleskop erlaubt detaillierten Einblick


Das gegenüber früheren Teleskopen viel größere Auflösungsvermögen von ALMA ermöglichte den Astronomen auch den erstmaligen Nachweis von gasförmigem Kohlenmonoxid in der Scheibe eines Braunen Zwerges. Zusammen mit der Beobachtung der millimetergroßen Körner legt diese Entdeckung die Annahme nahe, dass die hier beobachtete Scheibe den Staubscheiben um junge Sterne viel ähnlicher ist als bisher vermutet.


Ricci und seine Kollegen verwendeten für ihre Beobachtungen die erst teilweise fertiggestellte ALMA-Observatoriumsanlage hoch in den chilenischen Anden. ALMA ist ein im Aufbau befindliches Antennenfeld, dessen hochpräzise Parabolantennen wie ein einziges riesiges Teleskop zusammenarbeiten. Dieser Teleskopverbund kann das Universum mit nie dagewesener Genauigkeit und Empfindlichkeit untersuchen. Dabei beobachtet ALMA den Kosmos im Bereich der für das menschliche Auge unsichtbaren Millimeterstrahlung. Der Bau von ALMA wird im Jahr 2013 abgeschlossen sein. Bereits seit 2011 finden aber astronomische Beobachtungen mit einem Teil des Antennenfeldes statt.

Die Forscher richteten ALMA auf den jungen Braunen Zwerg ISO-Oph 102 (auch bekannt unter dem Namen Rho-Oph 102) in der Rho Ophiuchi-Sternentstehungsregion im Sternbild Ophiuchus (der Schlangenträger). Er hat etwa die 60-fache Masse des Jupiters. Das entspricht nur 0,06 Sonnenmassen und ist damit nicht genug, um in seinem Inneren jene thermonuklearen Reaktionen zu entfachen, die für die Leuchtkraft normaler Sterne sorgen. Dennoch glimmt der Braune Zwerg schwach rötlich, wenn auch mit sehr viel geringerer Helligkeit als ein Stern, da er Energie gewinnt indem er sich langsam durch seine eigene Schwerkraft zusammenzieht.

Mit Licht die Körnchengröße vermessen


ALMA fing bei dieser Beobachtung Licht mit einer Wellenlänge von etwa einem Millimeter auf, das von dem durch den Braunen Zwerg erwärmten Material der Scheibe stammt. Staubkörner wie die in der Scheibe geben bei Wellenlängen, die größer als die Korngröße sind, nur sehr wenig Strahlung ab. Dementsprechend entsteht an dieser Stelle ein charakteristischer Einbruch der gemessenen Strahlungsintensität. Da ALMA ideal dazu geeignet ist, um diesen Einbruch zu vermessen, gelang so eine Größenbestimmung der Körner. Die Astronomen verglichen dazu die Helligkeiten der Scheibe bei den Wellenlängen 0,89 mm und 3,2 mm. Der Einbruch zwischen diesen beiden Messpunkten war nicht so scharf wie erwartet, was zeigt, dass zumindest ein Teil der Körner Größen von einem Millimeter oder mehr hat.

In naher Zukunft wird ALMA komplett fertiggestellt sein und detaillierte Aufnahmen der Scheiben um Rho-Oph 102 und andere Objekte liefern. “Bald werden wir in der Lage sein, nicht nur die Existenz kleiner Partikel in den Scheiben nachzuweisen, sondern auch zu untersuchen, wie sie sich in der Scheibe verteilen und wie sie mit dem dortigen Gas wechselwirken. So werden wir besser verstehen, wie die Geburt von Planeten eigentlich abläuft”, schließt Ricci.
(Max-Planck-Institut für Astronomie, 03.12.2012 - KBE)
 
Printer IconShare Icon