• Schalter wissen.de
  • Schalter wissenschaft
  • Schalter scinexx
  • Schalter scienceblogs
  • Schalter damals
  • Schalter natur
Scinexx-Logo
Logo Fachmedien und Mittelstand
Scinexx-Claim
Facebook-Claim
Google+ Logo
Twitter-Logo
YouTube-Logo
Feedburner Logo
Donnerstag, 19.10.2017
Hintergrund Farbverlauf Facebook-Leiste Facebook-Leiste Facebook-Leiste
Scinexx-Logo Facebook-Leiste

Nanokristalle mit Überraschungseffekt

Fein strukturierte Metalle weisen nach Verformung keine Spuren auf

Besonders fein strukturierte Metalle haben eine bemerkenswerte Eigenschaft: Anders als bei herkömmlichen Materialien hinterlassen hier Verformungen keine Deformationsspuren. Dieses verblüffende Verhalten von nanokristallinen Werkstoffen deckte ein Forschungsteam am Paul-Scherrer-Institut (PSI) in der Schweiz auf.
Verformungsexperiment mit Nanokristallen

Verformungsexperiment mit Nanokristallen

Mit einem neu entwickelten Zugtestgerät sowie einem speziellen Messsystem verfolgten die Wissenschaftler erstmals in Echtzeit das Geschehen im Innern solcher Metalle. Anhand der Resultate lassen sich die mechanischen Eigenschaften von Werkstoffen verbessern. Profitieren davon kann beispielsweise die Mikroelektronik mit stets raffinierteren Materialien für Computerchips, Airbag-Sensoren und miniaturisierte Maschinen.

Geschehen im Nanobereich aufgedeckt


Wer Metalle plastisch verformt, hinterlässt Spuren: In den kleinen kristallinen Körnern, aus denen diese Materialien aufgebaut sind, entstehen durch äußere Kräfte mikroskopische Unregelmäßigkeiten. Dies gilt jedoch nur, solange die Korngröße über 50 Nanometer liegt, also größer ist als 50 Millionstel-Millimeter. Was unter dieser Grenze passiert, wusste lange Zeit niemand so genau. "Die Theorie sagt voraus, dass in Nanokristallen keine solchen Unregelmässigkeiten entstehen", erklärt Helena Van Swygenhoven, Materialwissenschaftlerin am PSI. Diese Annahme konnte jedoch bislang noch niemand beweisen - zu klein waren die Proben und zu gering die potenziellen Veränderungen.

Nun gelang der Forschungsgruppe von Van Swygenhoven zum ersten Mal, in Echtzeit Veränderungen innerhalb der Nanokristalle zu beobachten. Wie zuvor eigene Computersimulationen gezeigt hatten, stießen die Wissenschaftler dabei entgegen den theoretischen Vorhersagen auf ähnliche Prozesse wie bei grösseren Strukturen - jedoch mit einem entscheidenden Unterschied: Die dabei entstehenden linienförmigen Fehlordnungen durchqueren das ganze Korn und verschwinden wieder. Den Kristallen ist die plastische, das heisst irreversible Verformung nachträglich also nicht mehr anzusehen. Dieser überraschende Befund des PSI-Teams hat in der Fachwelt viel Aufmerksamkeit erregt und führte vor kurzem zu zwei Veröffentlichungen in den prestigeträchtigen Wissenschaftszeitschriften "Science" und "Nature".


Hundeknochen aus Nanomaterial


Um die Materialverformung unter standardisierten Bedingungen zu prüfen, bauten die Materialforscher zuerst eine Zugtestmaschine, in der sie die nur wenige Millimeter kleinen Proben prüfen können. Damit man die Prüfmuster ins Gerät einzuspannen vermag, müssen sie die Form eines Hundeknochens haben. Den eigentlichen Einblick in die kleinen Strukturen verschaffen sich die Wissenschaftler mit der hoch intensiven Röntgenstrahlung aus der Synchrotron Lichtquelle Schweiz (SLS), einem Teilchenbeschleuniger für Elektronen. Die stark gebündelte Strahlung wird dabei von der Kristallstruktur der Körner abgelenkt und danach von einem speziellen Detektor aufgefangen. Aufgrund der Ablenkung der Strahlung lassen sich Veränderungen in der Struktur der Proben nachweisen. "Der Detektor ist weltweit einmalig und ermöglicht uns die Messungen in Echtzeit", sagt Van Swygenhoven.

Auf dem Weg zu MEMS


Die Arbeiten der Materialforschungsgruppe am PSI sind ein wichtiger Schritt für die nächste Generation der Mikroelektronik: Sie liefern die Grundlagen zum Verständnis der Materialeigenschaften von metallischen Bauteilen in mikroelektromechanischen Systemen. Solche so genannten MEMS sind winzige Sensoren, Ventile oder Motoren, die in Halbleiter-Chips eingebunden sind. Sie dienen beispielsweise in Airbags als Bewegungsmelder, die nicht dicker sind als ein menschliches Haar. Auch Entwickler neuartiger Werkstoffe mit verbesserten mechanischen Eigenschaften profitieren künftig von den PSI-Messungen. So sind im Flugzeugbau harte und gleichzeitig verformbare Materialien gesucht.
Unterstützt wird die Forschung am PSI vom Schweizerischen Nationalfonds.
(Paul-Scherrer-Institut (PSI), 08.09.2004 - NPO)
 
Printer IconShare Icon