Anzeige
Biotechnologie

Proteine bekommen „Geburtshilfe“

Arbeitsweise von Helfern bei der Faltung von Proteinen entschlüsselt

Der Zusammenbau und die korrekte dreidimensionale Faltung eines jeden neu entstandenen Proteins im tierischen oder menschlichen Organismus erfolgt mit Hilfe eines speziellen Helferproteins, eines so genannten Chaperons oder Triggerfaktors. Wie genau diese „Geburtshilfe“ der Proteine abläuft, konnten nun Wissenschaftler vom Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH) entschlüsseln. Der Einblick in diese fundamentale Funktion einer Zelle wurde kürzlich der Fachzeitschrift „Nature“ veröffentlicht.

{1l}

Proteine – die Arbeitstiere in allen Zellen – finden sich in Bakterien ebenso wie beim Menschen, und sind an allen wichtigen Prozessen des lebenden Organismus beteiligt. Damit Proteine jedoch ihre jeweiligen Funktionen erfüllen können, müssen sie ihre korrekte räumliche Struktur einnehmen. Dies geschieht, indem sie sich falten – was jedoch ein sehr störanfälliger Prozess ist, der zu Zelltod und Krankheiten führen kann. Deshalb wird die Proteinfaltung von besonderen, hoch spezialisierten Proteinen – den molekularen Chaperonen – überwacht. „Der aus der französischen Sprache stammende Begriff lässt sich am besten mit ‚Anstandsdame‘ übersetzen“, weiß Privatdozentin Dr. Elke Deuerling vom ZMBH zu berichten. „Und das Wort passt auch sehr gut, tragen diese Anstandsdamen doch dafür Sorge, dass keine fehlerhaften – weil falsch gefalteten – Proteine in Umlauf kommen.“

Einzigartige dreidimensionale Faltung der Proteine

Ort des Geschehens innerhalb der Zelle sind die so genannten Ribosomen.

„Das sind komplexe zelluläre Maschinen, in denen die genetische Information umgesetzt wird in eine Kette von aneinander gereihten Aminosäure-Bausteinen. Doch diese Kettenbildung ist nur der erste Schritt auf dem Weg zu einem funktionstüchtigen Protein, müssen doch die neu synthetisierten Proteine erst noch vom Ort ihres Entstehens im Innern des Ribosoms durch einen engen Tunnel an die Oberfläche dieser Maschine gelangen.“ Hier nun beginnt der eigentliche Prozess der Proteinfaltung, durch den die Aminosäureketten eine dreidimensionale Struktur erhalten, die für jedes Protein einzigartig ist und durch die Reihenfolge der Bausteine vorgegeben wird. „Da dieser Faltungsvorgang jedoch so komplex und fehleranfällig ist, hat die Evolution gleich ein ganzes Arsenal von Helferproteinen entwickelt – eben die Chaperone. Sie binden und schützen die neu synthetisierten Proteine, bis sie ihre korrekte dreidimensionale Struktur erhalten haben,“ erklärt Elke Deuerling, die mit ihrer Arbeitsgruppe an Bakterien des Typs Escherichia coli arbeitet.

Anzeige

Protein-„Hebamme“ bildet Geburtshöhle

Der besonders gut erforschte Modellorganismus wurde nun speziell auf das erste Chaperon hin untersucht, das mit den neu synthetisierten Proteinen Kontakt aufnimmt und die Faltung assistiert. „Denn dieser so genannte Triggerfaktor sitzt direkt am Tunnelausgang des Ribosoms und nimmt Proteine, noch bevor sie vom Ribosom gänzlich fertig gestellt sind, in Empfang. Bisher war jedoch völlig unbekannt, wie genau der Triggerfaktor den Proteinen, die sich ja gerade erst aus dem Ribosom herauswinden, bei der Faltung hilft“

Genau dies konnte das hochkarätig besetzte Forscherteam – bestehend aus der Arbeitsgruppe von Prof. Nenad Ban von der ETH Zürich und den Arbeitsgruppen von Elke Deuerling und Prof. Bernd Bukau vom ZMBH – nun klären. Indem nämlich die Atomstruktur des Triggerfaktors im Komplex mit dem Ribosom entschlüsselt wurde, gewann man Einblick in dessen Arbeitsweise. „Somit konnten wir diesen grundlegenden Prozess einer lebenden Zelle verstehen. Wir wissen jetzt, dass sich der Triggerfaktor über den Tunnelausgang des Ribosoms wölbt, und eine Höhle bildet, in der die aus dem Ribosom herauswachsende Aminosäurekette aufgenommen wird. Wahrscheinlich finden in dieser Höhle – sozusagen in einer geschützten Umgebung – auch gleich die ersten Faltungsschritte eines Proteins statt,“ vermutet Elke Deuerling. Besonders interessant ist in diesem Zusammenhang jedoch nicht nur der erstmalige Beweis, dass der Triggerfaktor eine solche Höhle bildet. „Vielmehr konnten wir neben der Form auch die Position auf dem Ribosom klären – und hieraus wiederum erstmals Einblicke in die Arbeitsweise dieses Chaperons gewinnen.“

Weiterer Forschungsbedarf

Natürlich geben sich die Forscher mit diesen Erkenntnissen noch längst nicht zufrieden. Vielmehr denkt man am ZMBH bereits über die weiteren Schritte nach. „Als nächstes müssen wir natürlich klären, wie genau es in dieser auf dem Ribosom sitzenden Höhle zur Faltung kommt. Außerdem ist noch unklar, wie es sich im Fall all jener Proteine verhält, die erst dann falten sollen, wenn sie in der Zelle an den ihnen vorbestimmten Ort gebracht worden sind. Wie werden all die Prozesse koordiniert – das ist die Frage. Und schließlich ist auch noch unklar, wie diese Vorgänge in höheren Zellen, wo es keine Triggerfaktoren gibt, ablaufen. Denn dort müssen logischerweise ähnliche Strukturen mit den selben Eigenschaften vorhanden sein, ist doch das Phänomen der Proteinfaltung universell.“ Somit ist das weitgesteckte Ziel – die Erforschung der Proteinfaltung sowie der Korrektur falscher Faltungen in den verschiedenen Zelltypen – bereits jetzt vorgegeben.

(Universität Heidelberg, 08.09.2004 – NPO)

Teilen:
Anzeige

In den Schlagzeilen

News des Tages

Klima und Wirtschaft

Klimawandel: So teuer wird es

Neue Fossilien vom größten Meeressaurier

Wie schmeckte der Wein der Römer?

Wie Nagetiere ihre Schneidezähne schützen

Diaschauen zum Thema

keine Diaschauen verknüpft

Dossiers zum Thema

keine Dossiers verknüpft

Bücher zum Thema

keine Buchtipps verknüpft

Top-Clicks der Woche