• Schalter wissen.de
  • Schalter wissenschaft
  • Schalter scinexx
  • Schalter scienceblogs
  • Schalter damals
  • Schalter natur
Scinexx-Logo
Logo Fachmedien und Mittelstand
Scinexx-Claim
Facebook-Claim
Google+ Logo
Twitter-Logo
YouTube-Logo
Feedburner Logo
Montag, 23.01.2017
Hintergrund Farbverlauf Facebook-Leiste Facebook-Leiste Facebook-Leiste
Scinexx-Logo Facebook-Leiste

Quantenphysik macht Cloud Computing sicher

Forscherteam weist Datensicherheit im Grundlagenexperiment nach

Ein internationales Wissenschaftlerteam hat nachgewiesen, dass Quanteneffekte absolut sicheres Cloud Computing möglich machen. In einem neuen Experiment gelang es den Forschern, einen Quantencomputer so zu konstruieren, dass alle Ergebnisse der Daten und Rechnungen dem Rechner selbst verborgen blieben, berichtet die Fachzeitschrift „Science“.
Darstellung von verschiedenen verschränkten Zuständen

Darstellung von verschiedenen verschränkten Zuständen

Quantencomputer haben gegenüber klassischen Computern einen bedeutenden Vorteil: schnellere Rechnungen, die auf Quanteneffekten beruhen. Aufgrund Ihrer Komplexität existieren sie bisher nur als Grundlagenexperimente wie im Labor der Fakultät für Physik der Universität Wien. Daher ist es naheliegend, dass diese Technik zukünftig zunächst nur in wenigen spezialisierten Rechenzentren zur Verfügung stehen wird – ähnlich wie bei heutigen Großrechnern.

Auslagerung in die „Rechnerwolke“


Diese Strategie folgt dem aktuellen Trend des Cloud Computing, bei dem IT-Leistungen werden in die „Rechnerwolke“ ausgelagert werden. Nutzer könnten von außerhalb Anfragen an einen Quantencomputer stellen und Quantenrechnungen durchführen. Das neue Cloud Computing hat gegenüber derzeitigen Lösungen einen entscheidenden Vorteil, der nur durch Quanteneffekte erreicht werden kann: Es ist absolut sicher.

Code oder Telefonbuch?


Ein Team des Vienna Center for Quantum Science and Technology (VCQ) an der Universität Wien und des Instituts für Quantenoptik und Quanteninformation der Österreichischen Akademie der Wissenschaften hat in Kooperation mit internationalen Forschungsinstituten erstmals diese absolute Sicherheit der Daten in einem Grundlagenexperiment realisiert. Dabei führt ein Quantencomputer Rechnungen durch, kann aber selbst nicht herausfinden, welche es sind.


„Der Quantenrechner kann beispielsweise nicht unterscheiden, ob er gerade einen Code entschlüsselt, oder einen Eintrag in einem Telefonbuch sucht“, erklärt Stefanie Barz, Hauptautorin der neuen Studie.

Ergebnisse einer absolut sicheren Quantenrechnung in der „Rechnerwolke“

Ergebnisse einer absolut sicheren Quantenrechnung in der „Rechnerwolke“

„Blind“ errechnet


Dies könnte in Zukunft folgendermaßen funktionieren: Ein Nutzer präpariert Qubits – die kleinsten Einheiten des Quantencomputers – in einem nur ihm bekannten Zustand und sendet diese zum Quantencomputer. Dieser verschränkt die Qubits nach einem bestimmten Schema. Die Quantenrechnungen werden nun durch Messungen realisiert. Dazu schickt der Nutzer verschiedene Messanweisungen an den Quantencomputer.

Diese Anweisungen sind an den Zustand der Qubits angepasst und ergeben nur einen Sinn, wenn auch der Zustand der Qubits bekannt ist. Da der Quantencomputer diesen jedoch nicht kennt, sind für ihn die Rechnungen eine unzusammenhängende Abfolge an Operationen. Daher kann er zu keinem Zeitpunkt Rückschlüsse ziehen, welche Rechnung er gerade durchführt – er rechnet „blind“. Am Ende der Rechnung werden Ergebnisse an den Nutzer zurückgesendet.

Nur der Nutzer kann die Ergebnisse interpretieren


„Der Nutzer kann als einziger die Ergebnisse interpretieren und nutzen, da nur er die Ausgangszustände der Qubits kennt“, erklärt Barz. Beim Wiener Experiment wurden einzelne Lichtteilchen, Photonen genannt, als Qubits verwendet. Deren Polarisation, die Schwingungsebene des Lichts, ist die Grundlage für das photonische Qubit, und Photonen sind perfekt geeignet, weil sie ideale Informationsträger sind und über weite Distanzen gesendet werden können.
(Universität Wien / Die Junge Akademie an der Berlin-Brandenburgischen Akademie der Wissenschaften und der Deutschen Akademie der Naturforscher Leopoldina, 23.01.2012 - DLO)
 
Printer IconShare Icon