• Schalter wissen.de
  • Schalter wissenschaft
  • Schalter scinexx
  • Schalter scienceblogs
  • Schalter damals
  • Schalter natur
Scinexx-Logo
Logo Fachmedien und Mittelstand
Scinexx-Claim
Facebook-Claim
Google+ Logo
Twitter-Logo
YouTube-Logo
Feedburner Logo
Freitag, 26.05.2017
Hintergrund Farbverlauf Facebook-Leiste Facebook-Leiste Facebook-Leiste
Scinexx-Logo Facebook-Leiste

Komplexe Flüssigkeiten vereinfacht

Theorie und Experiment zeigen Wechselwirkungen in komplexen Flüssigkeiten

Einem internationalen Forschungsteam ist es erstmals gelungen, eine breit anwendbare Methode zu entwickeln, um komplexen Flüssigkeiten ihre physikalischen Grundlagen zu entlocken. Sie entwickelten eine mikroskopische Theorie, die die Wechselwirkungen zwischen den verschiedenen Komponenten einer komplexen Polymermischung beschreibt und belegten experimentell mit Neutronenstreuexperimenten. Die jetzt in der Fachzeitschrift „Physical Review Letters" veröffentlichte Methode bietet neue Möglichkeiten, die physikalischen Eigenschaften ganz unterschiedlicher komplexer Mischungen zu untersuchen.
Mischung aus Sternpolymeren (gelb und blau) und linearen Polymeren (rot) ersetzt im Modell durch Kugeln (rechts).

Mischung aus Sternpolymeren (gelb und blau) und linearen Polymeren (rot) ersetzt im Modell durch Kugeln (rechts).

Wichtige Materialien aus Technik und Natur gehören zu den komplexen Flüssigkeiten: Polymerschmelzen für die Kunststoffproduktion, Mischungen aus Wasser, Öl und Amphiphilen, die in lebenden Zellen genauso zu finden sind wie in der Waschtrommel, oder kolloidale Suspensionen, wie Blut oder Dispersionsfarben. Sie unterscheiden sich wesentlich von einfachen Flüssigkeiten aus kleinen Molekülen, wie etwa Wasser: Denn sie bestehen aus Mischungen mikro- und nanometergroßer Teilchen mit einer großen Zahl so genannter Freiheitsgrade. Das sind zum Beispiel Schwingungen, Bewegungen der funktionellen Gruppen von Molekülen oder gemeinsame Bewegungen mehrerer Moleküle. Sie machen sich auf sehr unterschiedlichen Längen-, Zeit- und Energieskalen bemerkbar. Dies erschwert experimentelle und theoretische Untersuchungen und behinderte bisher das Verständnis der Eigenschaften dieser Materialien und die gezielte Entwicklung neuer Materialien mit besseren Eigenschaften.

Theorie beschreibt Wechselwirkungen


Eine von Physikern des Forschungszentrums Jülich, des Instituts Laue-Langevin und der Universitäten Wien und Rom entwickelte und getestete Methode ermöglicht nun erstmals eine realistische
Modellierung komplexer Flüssigkeiten. "Unsere mikroskopische Theorie beschreibt die Wechselwirkungen zwischen den verschiedenen Komponenten einer komplexen Mischung und
ermöglicht dadurch realistische Rückschlüsse auf ihre makroskopischen Eigenschaften, etwa ihre Struktur oder ihre Fließeigenschaften", freut sich Professor Christos Likos von der Universität Wien, Experte für Theorie und Simulation.

Das Team aus Wien und Rom erarbeitete das Theorie-Modell. Weil die Forscher dafür nicht alle Details des echten Systems - einer Mischung aus größeren sternförmigen Polymeren und kleineren
Polymerketten - einbeziehen konnten, eliminierten sie systematisch die schnellen Freiheitsgrade und konzentrierten sich auf die relevanten, langsamen Freiheitsgrade - eine langwierige und anspruchsvolle Arbeit. „Dafür nutzen wir eine relative neue Methode namens `Coarse Graining´ und ersetzten jedes komplexe Makromolekül durch eine Kugel passender Größe. Die Herausforderung besteht darin, die weggelassenen Freiheitsgrade gemittelt in das vereinfachte System einfließen zu lassen, so dass die Charakteristika der Substanzen erhalten bleiben", erläutert Likos.


Experiment belegt Gültigkeit der Theorie


Dass die Wechselwirkungen zwischen den Kugeln des vergröberten Modells die Verhältnisse im echten System realistisch nachbilden, belegte das Team aus Jülich mit Hilfe aufwendiger Neutronenstreuexperimente am Institut Laue-Langevin im französischen Grenoble. "Wir standen vor der Schwierigkeit, sozusagen die Nadel im Heuhaufen abzulichten", erklärt der Physiker und Experte für Neutronenstreuung Jörg Stellbrink vom Jülich Centre for Neutron Science (JCNS). Denn für Neutronen sind die einzelnen Polymere der Mischung zunächst nicht zu unterscheiden.

Deshalb färbten die Physiker die für sie interessanten Bestandteile so an, dass sie sich abhoben. Das ist eine Spezialität des Jülicher Teams. So konnten sie gezielt die Strukturen und Wechselwirkungen auf mikroskopischer Längenskala untersuchen. Besonders stolz sind die Physiker auf die sehr gute Übereinstimmung zwischen Theorie und Experiment. Die Methode eröffnet nun breite Möglichkeiten, die physikalischen Eigenschaften ganz unterschiedlicher komplexer Mischungen zu untersuchen. (Physical Review Letters, 2011; DOI: 10.1103/PhysRevLett.106.228301)
(Forschungszentrum Jülich, 03.06.2011 - NPO)
 
Printer IconShare Icon