• Schalter wissen.de
  • Schalter wissenschaft
  • Schalter scinexx
  • Schalter scienceblogs
  • Schalter damals
  • Schalter natur
Scinexx-Logo
Logo Fachmedien und Mittelstand
Scinexx-Claim
Facebook-Claim
Google+ Logo
Twitter-Logo
YouTube-Logo
Feedburner Logo
Dienstag, 27.09.2016
Hintergrund Farbverlauf Facebook-Leiste Facebook-Leiste Facebook-Leiste
Scinexx-Logo Facebook-Leiste

Quanten-Zwillinge aus dem Atomchip

Forscher erzeugen durch ausgeklügelte Atom-Chips quantenphysikalisch verknüpfte Atom-Zwillinge

Wiener Wissenschaftlern ist es gelungen, durch ausgeklügelte Atom-Chips quantenphysikalisch verknüpfte Atom-Zwillinge zu erzeugen. Bisher waren ähnliche Experimente nur mit Lichtteilchen möglich, berichten die Forscher in der Fachzeitschrift „Nature Physics“.
Bose-Einstein-Kondensat im Atomchip emittiert Atompaare

Bose-Einstein-Kondensat im Atomchip emittiert Atompaare

Objekte, die voneinander weit entfernt sind, sich aber trotzdem nicht getrennt voneinander verstehen und beschreiben lassen – sie gehören zu den erstaunlichsten Merkwürdigkeiten der Quantenphysik. Photonenpaare, wie sie in speziellen Kristallen erzeugt werden sind ein prominentes Beispiel. Durch sie kann man Quantenzustände teleportieren oder Daten mittels Quantenkryptografie abhörsicher übertragen.

In Zukunft werden solche Experimente nicht nur mit Lichtteilchen möglich sein: Denn an der Technischen Universität (TU) Wien wurde nun mithilfe von ultrakalten Bose-Einstein-Kondensaten eine Methode entwickelt, korrelierte Atompaare zu erzeugen.

Getrennt und doch vereint


Schon Einstein wollte nicht so recht daran glauben, dass voneinander getrennte Teilchen quantenphysikalisch verbunden sein können und nannte solche Phänomene „spukhafte Fernwirkung“. Doch seither wurden die überraschenden Schlussfolgerungen der Quantentheorie immer wieder bestätigt: Quantenteilchen können – auch wenn sie weit voneinander entfernt sind – noch immer zusammengehören und sich gewisse physikalische Eigenschaften „teilen“.


„Das bedeutet nicht, dass man durch Manipulation am einen Teilchen auch das andere verändern könnte, als wären sie durch einen unsichtbaren Faden miteinander verbunden“, erklärt Professor Jörg Schmiedmayer vom Atominstitut der TU Wien. „Aber trotzdem muss man beide Teilchen als ein Quantensystem gemeinsam betrachten – und das gibt uns Möglichkeiten für spannende Experimente.“ Schmiedmayers Team führte die neue Studie an der TU Wien durch, unterstützt von theoretischen Berechnungen von Ulrich Hohenester an der Universität Graz.

Energie- und Impulserhaltung


Um die quantenphysikalisch korrelierten Atome zu erzeugen stellten die Wissenschaftler zunächst ein Bose-Einstein-Kondensat her. Dieser exotische Materiezustand stellt sich bei extrem tiefen Temperaturen ein – einige Milliardstel Grad über dem absoluten Nullpunkt. In einem Bose-Einstein-Kondensat befinden sich alle Atome im niedrigst-möglichen Energiezustand.

„Der Schlüssel zum Erfolg liegt in unseren Atom-Chips“ erklärt Thorsten Schumm von der TU Wien. Mit diesen maßgeschneiderten Chip-Strukturen können Atome ganz gezielt manipuliert und gesteuert werden. So ist es möglich, den Atomen des ultrakalten Bose-Einstein-Kondensates gezielt ein Quantum Schwingungsenergie zuzuführen. Wenn die Atome dann wieder in den Zustand niedrigster Energie zurückkehren, muss das Kondensat die überschüssige Energie wieder loswerden.

„Durch ein ausgeklügeltes Design unseres Atom-Chips hat das Bose-Einstein-Kondensat nur eine einzige Möglichkeit, Energie abzugeben: Die Aussendung von Atom-Paaren. Alle anderen Varianten sind quantenphysikalisch verboten“, erklärt der Wiener Wissenschaftler Robert Bücker. Nach dem Gesetz der Impulserhaltung bewegen sich die beiden ausgesandten Atome dann in genau entgegengesetzte Richtungen auseinander. Der Prozess ist analog zu dem Effekt, der in speziellen nicht-linearen Kristallen bei der Erzeugung von Lichtteilchen-Paaren auftritt - optischer parametrischer Oszillator -, aber nun funktioniert er nicht nur für Licht sondern auch für Materieteilchen.

Bald neue Quanten-Messverfahren?


Die ausgesandten Atom-Zwillinge kann man sich den Forschern zufolge aber nicht einfach wie klassische Partikel vorstellen, wie sie etwa bei einer Explosion in alle Richtungen davonfliegen. Sie sind quantenphysikalische Kopien voneinander und unterscheiden sich nur durch die entgegengesetzte Bewegungsrichtung. Sie bilden quasi ein gemeinsames Quanten-Objekt – ein Atom kann nicht mathematisch beschrieben werden, ohne gleichzeitig auch das andere zu beschreiben.

„Diese Atome werden wir in Zukunft für spannende Versuche nützen“, ist Schmiedmayer zuversichtlich. „Ein unglaublich aufregendes Forschungsgebiet tut sich hier auf. Welche neuen Erkenntnisse oder Anwendungsmöglichkeiten sich daraus ergeben werden, ist heute noch gar nicht absehbar. Es ist gut vorstellbar, dass durch diese korrelierten Atomstrahlen neue Quanten-Messverfahren ermöglicht werden, mit einer Präzision, die die Möglichkeiten der klassischen Physik bei weitem übersteigt.“ (Nature Physics, 2011; doi:10.1038/nphys1992)
(Technische Universität Wien, 02.05.2011 - DLO)
 
Printer IconShare Icon