Anzeige
Chemie

Wasser hilft Proteinen bei der Partnersuche

Wassermoleküle richten ihre elektrischen Dipole einheitlich aus und fördern dadurch die Bildung von Eiweiß-Komplexen

Proteine sind die Grundbausteine der Zellen und verantwortlich für fast alle Prozesse im menschlichen Körper. Dabei bilden etwa die Hälfte aller Eiweiße zumindest zeitweilig Komplexe mit anderen Proteinen. Bisher war aber nicht endgültig klar, wie die Proteine in einer wässrigen Umgebung miteinander interagieren können. Doch jetzt haben Saarbrücker Bioinformatiker einen grundsätzlichen Mechanismus entdeckt, der erklärt, warum Wasser die Bindung von Proteinen fördert.

{1r}

Die Forscher konnten jetzt in einer Computersimulation über die die Fachzeitschrift „Nature Communications“ berichtet, zeigen, dass sich die Wassermoleküle in der Umgebung von Proteinen elektrostatisch ausrichten, kurz bevor sich zwei Proteine aneinanderlagern.

Wassermoleküle richten elektrische Dipole einheitlich aus

Bisher ging man bei vielen polaren Stoffen davon aus, dass Wasser sie eher daran hindert, miteinander zu verschmelzen. Da auch der menschliche Körper zu 60 bis 70 Prozent aus Wasser besteht, war es für Biologen lange Zeit ein Rätsel, wie sich Proteine in dieser wässrigen Umgebung aneinanderbinden.

Das Forscherteam von Volkhard Helms, Professor für Bioinformatik der Universität des Saarlandes, konnte jetzt nachweisen, dass Wassermoleküle in der Nähe von Proteinen ihre elektrischen Dipole einheitlich ausrichten und dadurch das Zusammengehen von zwei Proteinen fördern.

Anzeige

Verstärkte Anziehungskräfte

„Was dabei genau passiert, lässt sich mit folgendem Bild vergleichen: Wenn in einer Menschenmenge plötzlich von zwei Seiten Brad Pitt und Angelina Jolie auftauchen, werden sich die Fans zunächst um jeden einzelnen scharen und die beiden dadurch daran hindern, sich zu treffen. Falls sich die beiden jedoch irgendwann nah genug kommen, wird sich die Menge öffnen und den Weg freimachen, damit sich die Medienstars umarmen können“, erläutert Helms, der zusammen mit Mazen Ahmad, Wei Gu und Tihamér Geyer für die neue Studie verantwortlich war.

Ähnlich verhielten sich die Proteine, die zuerst durch das Wasser abgeschirmt seien, sich dann aber durch die bei nahen Abständen verstärkten Anziehungskräfte plötzlich aufeinander zu bewegten.

Barnase–Barstar-Komplex untersucht

Die Saarbrücker Bioinformatiker nahmen für ihre Computersimulation ein Proteinpaar, das in menschlichen Zellen extrem fest aneinander haftet, den so genannten Barnase–Barstar-Komplex. Das Barnase-Protein ist in der Lage, die Ribonukleinsäure (RNA), die in der Zelle genetische Information in Proteine umsetzt, zu zerschneiden. Dies hat außerhalb von Zellen den Zweck, überflüssige RNA-Stränge zu vernichten. Innerhalb der Zelle wäre dieser Vorgang aber tödlich. Daher hindert das Barstar-Protein als so genannter Inhibitor die Barnase daran, in einer Zelle aktiv zu werden.

Bisher war jedoch unklar, wie diese Proteine in der wässrigen Umgebung überhaupt zueinander finden. „In der Computersimulation konnten wir die einzelnen Kräfte in der Zelle berechnen und erstmals diesen Annäherungsprozess von zwei Proteinen detailliert aufzeigen. Die elektrische Ausrichtung der Wassermoleküle, die sich bei der Annäherung der Proteine in die gleiche Richtung orientieren, führt dazu, dass sich die Anziehungskräfte zwischen den Proteinen zwei- bis vierfach verstärken, so dass diese dann rasch binden und das Wasser um sich herum abstreifen“, sagt Helms.

Mechanismen des Lebens besser verstehen

Diese neuen Erkenntnisse werden nach Ansicht der Wissenschaftler auf viele Forschungsprojekte in der Biologie und Medizin ein neues Licht werfen. „Wir hoffen, dass unsere Computersimulationen dazu beitragen werden, die grundlegenden Mechanismen des menschlichen Lebens noch besser zu verstehen. Dies wird auch helfen, für verschiedene Krankheiten bessere Wirkstoffe zu entwickeln“, meint Helms. (Nature Communications, 2011)

(Universität des Saarlandes, 31.03.2011 – DLO)

Teilen:
Anzeige

In den Schlagzeilen

News des Tages

Gezüchtete Diamanten

Erste Diamanten unter Normaldruck erzeugt

Neuer Stammbaum für die Blütenpflanzen

Könnte dieses Riesenvirus zum Heilmittel werden?

Wie lebten die Awaren?

Diaschauen zum Thema

Dossiers zum Thema

Bücher zum Thema

Wie Zellen funktionieren - Wirtschaft und Produktion in der molekularen Welt von David S. Goodsell

50 Schlüsselideen Genetik - von Mark Henderson

Phänomen Mensch - Körper, Krankheit, Medizin von Andreas Sentker und Frank Wigger

Nanotechnologie für Dummies - Spannende Entdeckungen aus dem Reich der Zwerge von Richard D. Booker und Earl Boysen

Die Macht der Gene - Schön wie Monroe, schlau wie Einstein von Markus Hengstschläger

Lehrbuch der Molekularen Zellbiologie - von Lutz Nover und Pascal von Koskull-Döring

Was treibt das Leben an? - Eine Reise in den Mikrokosmus der Zelle von Stephan Berry

Welt der Elemente - von Hans-Jürgen Quadbeck- Seeger

Feuer und Flamme, Schall und Rauch - Schauexperimente und Chemiehistorisches von Fritz R. Kreißl und Otto Krätz

Top-Clicks der Woche