• Schalter wissen.de
  • Schalter wissenschaft
  • Schalter scinexx
  • Schalter scienceblogs
  • Schalter damals
  • Schalter natur
Scinexx-Logo
Scinexx-Claim
Facebook-Claim
Google+ Logo
Twitter-Logo
YouTube-Logo
Feedburner Logo
Mittwoch, 29.06.2016
Hintergrund Farbverlauf Facebook-Leiste Facebook-Leiste Facebook-Leiste
Scinexx-Logo Facebook-Leiste

Rätsel um Quantenbits gelöst

Elektrische Kontaktierung eines Bits der Quantenwelt gelungen

Hamburger Forscher haben erstmals gezeigt, dass im Labor einzelne Quantenbits in einem Halbleiter elektrisch adressiert werden können. Dies ist ein weiterer wichtiger Schritt auf dem Weg zum Zeitalter der Quanten-Informationstechnologie, schreibt das Wissenschaftsmagazin „Nature“ in seiner aktuellen Ausgabe.
Quantenbits

Quantenbits

Sämtliche digitalen Geräte unseres derzeitigen Informationszeitalters basieren auf Rechenoperationen, die von Mikroprozessoren durchgeführt werden. Damit die Prozessoren rechnen können, werden in ihm die Zahlen in Ansammlungen so genannter Bits gespeichert und weiterverarbeitet. Das Bit, ein Zustand der entweder „1“ oder „0“ sein kann, ist also der Grundbaustein der Informationstechnologie.

Heutzutage sind die Prozessoren im Wesentlichen aus Unmengen kleinster Transistoren aufgebaut, die auf Silizium-Wafern aufgebracht sind. In diesen Transistoren wird ein Bit durch Aufladung mit Elektronen gespeichert: ist der Transistor mit Elektronen geladen, entspricht dies der „1“, ist er ungeladen, entspricht dies der „0“.

Kleinere Geräte, kleinere Prozessoren


Die stetig zunehmende Miniaturisierung üblicher digitaler Geräte der Unterhaltungsindustrie erfordert immer kleinere und schnellere Prozessoren, die die Flut der Daten auf kleinstem Raum in Sekundenbruchteilen verarbeiten können. Daher gab es in den letzten Jahrzehnten einen exponentiellen Anstieg der realisierbaren Dichte der Transistoren.


Diese Entwicklung wird jedoch in wenigen Jahren an ihre Grenzen stoßen, wenn nämlich die Transistoren so klein werden, dass sie nur noch aus wenigen hundert Siliziumatomen bestehen.

Paradigmenwechsel nötig


Um die wirtschaftliche Entwicklung aufrechtzuerhalten, ist daher ein Paradigmenwechsel vonnöten. Die Idee ist, in Transistoren oder ähnlichen Bauteilen nicht mehr die elektrische Ladung der Elektronen auszunutzen, sondern deren zweite Eigenschaft, die mit der Funktion einer Kompassnadel vergleichbar ist: Die Elektronen rotieren um ihre eigene Achse, sowohl links als auch rechts herum. Dabei erzeugen sie ein magnetisches Moment, das nach unten oder oben zeigen kann. In der Ausrichtung dieses „Spins“ könnte man also bereits in einem einzelnen Elektron die Information speichern, die einem Bit entspricht.

Aufgrund der kleinen räumlichen Ausdehnung des Elektrons, das in Silizium beispielsweise an ein einzelnes Dotieratom gebunden sein könnte, wäre prinzipiell eine immens hohe Dichte der Bits realisierbar. Da das Wechseln des Zustands eines solchen Bits von „0“ in „1“ keinen Ladungstransport erfordert - das Elektron bleibt ja auf seinem Platz -, wäre die Verarbeitung dieser Bits in Prozessoren zudem durch einen deutlich geringeren Energieverbrauch begleitet.

Leistungsfähige Quantenbits


Solche Bits gehorchen nicht mehr den mechanischen Gesetzen der uns vertrauten makroskopischen Welt, sondern obliegen der Quantenmechanik und werden daher auch „Quantenbit“ genannt. Dies hat unter anderem zur Konsequenz, dass das Quantenbit nicht mehr nur im Zustand „1“ oder „0“ sein kann, sondern in einer Mischung aus beiden Zuständen. Dadurch kann das Quantenbit also von sich aus schon mehr Information speichern als ein herkömmliches Ladungs-Bit.

Weiter Weg zum Quantencomputer


Ferner erlaubt dies prinzipiell auch Operationen durchzuführen, die sich genau diese Mischzustände zunutze machen, um wesentlich schneller und effizienter zu rechnen. Um die Vision dieses Quantencomputers wahr werden zu lassen, sind jedoch noch verschiedenste Probleme zu lösen, wie zum Beispiel das des elektrischen Auslesens des Zustands einzelner Quantenbits.

Genau dieses Problem wurde von den Hamburger Forschern nun geknackt. Das Team um Jens Wiebe und Professor Roland Wiesendanger vom Institut für Angewandte Physik untersuchte einen Indiumantimonid-Wafer, in dessen Oberfläche einzelne Eisenatome dotiert wurden. Mit einem atomar feinen magnetischen Lesekopf konnten sie die Oberfläche abtasten, und jedes einzelne Eisenatom adressieren.

Quantenbit mit drei möglichen Einstellungen


Wie die Untersuchung ergab, bilden die Elektronen, die an eins dieser Eisenatome gebunden sind, ein Quantenbit mit sogar drei möglichen Einstellungen – „1“, „0“ und „-1“. Mit dem Lesekopf war es nach Angaben der Forscher nicht nur möglich auszulesen, in welchem seiner drei Zustände sich das Quantenbit bevorzugt aufhielt, auch sein Zustand konnte manipuliert werden. Das heißt, es war gewissermaßen möglich es mit Information zu „beschreiben“.

Kopplungen zwischen benachbarten Quantenbits untersucht


Das Auslesen und Schreiben in Halbleiter dotierter Quantenbits war den Wissenschaftlern zufolge bisher nur unter sehr speziellen Bedingungen mit optischen Methoden möglich. Diese Methoden sind räumlich aber nicht präzise genug, um einzelne Quantenbits, die dicht gepackt sind, voneinander zu trennen.

Mit dem vom Hamburger Forscherteam entwickelten atomar präzisen Verfahren wird es dagegen jetzt möglich, Kopplungen zwischen benachbarten Quantenbits zu untersuchen. Diese Kopplungen sind letztendlich für die Funktion der zukünftigen Quantencomputer von entscheidender Bedeutung.
(idw - Sonderforschungsbereich 668, 29.10.2010 - DLO)