Anzeige
Biologie

Laserpulse bringen lebende Zellen zum Leuchten

Einzelne Moleküle lassen sich mit herkömmlichen Fluoreszenz-Farbstoffen sichtbar machen

Gewaltiger Unterschied: Links eine herkömmliche Fluoreszenz-Aufnahme der 2B-Histone im Zellkern, rechts die superaufgelöste Variante, erstellt aus 10.000 Einzelaufnahmen mit der Methode dSTORM (direct stochastic optical reconstruction microscopy). © Arbeitsgruppe Markus Sauer / Biozentrum Uni Würzburg

Einzelne Moleküle und ihre Dynamik lassen sich auch in lebenden Zellen mit herkömmlichen Fluoreszenz-Farbstoffen mit einer Auflösung von etwa 20 Nanometern sichtbar machen. Wie das geht, zeigt ein internationales Wissenschaftlerteam jetzt erstmals in der Zeitschrift „Nature Methods“.

Was läuft in einer Zelle zwischen den Molekülen ab, wie kann man diese Vorgänge sichtbar machen? Mit dieser Frage befasst sich das Team von Professor Markus Sauer am Biozentrum der Universität Würzburg. Die Forscher setzen dabei auf neueste Techniken der Fluoreszenz-Mikroskopie, die sich durch eine hohe zeitliche und räumliche Auflösung auszeichnen.

Wie Fluoreszenz-Mikroskopie funktioniert? Einfach gesagt: DNA, Proteine oder andere Moleküle in der Zelle werden mit fluoreszierenden Farbstoffen markiert. „Beschießt“ man die Zelle dann mit Laserpulsen, leuchten die markierten Moleküle kurzzeitig auf. Ihr Fluoreszenzsignal, gewissermaßen das „Licht-Echo“, lässt sich mit technischen Tricks sichtbar machen.

Verwaschener Lichtfleck

Wer mit dem Fluoreszenz-Mikroskop zum Beispiel viele einzelne Proteine abbilden will, steht aber vor einer Herausforderung: Leuchten alle Proteine in der Zelle gleichzeitig auf, erscheint im Mikroskop nur ein verwaschener Lichtfleck. Grund: Die Proteine liegen zu nah beieinander, ihre Lichtsignale überlappen sich – wie bei einem Kreuzfahrtschiff, auf dem in allen Kabinen das Licht an ist. Aus zu großer Entfernung sieht das Auge dann auch nur einen einzigen Lichtfleck.

Würde man aber die Lichter an Bord einzeln und nur für kurze Zeit anschalten, ließe sich die Position jeder Kabine genau bestimmen. „Falls sich das Schiff dabei bewegt, muss das natürlich schnell gehen, damit die Lichtsignale nicht verschmieren“, sagt Sauer.

Anzeige
Mit Fluoreszenz-Farbstoffen markierte 2B-Histone im Kern einer lebenden Zelle: Oben ein Ausschnitt aus der vorherigen Abbildung, in der weiteren Vergrößerung (e, f) sind einzelne Histon-Moleküle erkennbar. Der weiße Messbalken entspricht 200 Nanometern. © Arbeitsgruppe Markus Sauer / Biozentrum Uni Würzburg

Lebende Zellen mit herkömmlichen Farbstoffen untersuchbar

Genau diese Strategie wendet das Würzburger Team an – mit Fluoreszenz-Farbstoffen, die sich durch Lichtsignale an- und ausschalten lassen, die „optisch schaltbar“ sind, wie die Forscher sagen. Damit ergeben sich deutlich schärfere Bilder von den Zuständen in der Zelle.

Optisch schaltbare Fluoreszenz-Farbstoffe versagen jedoch in lebenden Zellen, weil die Gegenwart von Sauerstoff stört – das war zumindest die bislang vorherrschende Meinung in der Wissenschaft. Doch Sauers Team hat mit Kollegen in Bielefeld und New York nun erstmals gezeigt, dass das Gegenteil der Fall ist: „Wir haben den Mechanismus durchschaut und wissen, dass es auch in lebenden Zellen geht.“

Superaufgelöste Bildgebung

Wie dieser Mechanismus aussieht? Zellen enthalten Glutathion, das die meisten kommerziell verfügbaren optisch schaltbaren Farbstoffe nach der Laseranregung in einen stabilen, mehrere Sekunden dauernden Aus-Zustand versetzt. Zugleich läuft eine Reaktion mit Sauerstoff ab, die die Farbstoffe wieder anschaltet, aber sehr ineffizient ist.

„Die Mehrzahl der Farbstoff-Moleküle ist darum ständig aus, und genau das ist die Voraussetzung, damit die superaufgelöste Bildgebung funktioniert“, erklärt Sauer.

Histone im Zellkern markiert

Ihre Methodik exerzieren die Wissenschaftler in „Nature Methods“ an den Histonen lebender menschlicher Zellen vor. Histone sind Proteine, mit deren Hilfe die DNA im Zellkern platzsparend verpackt wird. Fünf verschiedene Histone gibt es, mit der Variante 2B haben die Forscher gearbeitet.

Zuerst koppelten sie solche Histone an ein bakterielles Enzym – die Dehydrofolatreduktase. Dann fügten sie den Fluoreszenz-Farbstoff dazu, den sie zuvor an das Antibiotikum Trimethoprim geknüpft hatten. Der Trick dabei: Das Antibiotikum verbindet sich hoch spezifisch mit dem Enzym und über diese Behelfsbrücke lassen sich die Histone vom Typ 2B mit Farbstoffen markieren.

Nächster Schritt: Zellteilung beobachten

Mit dieser Methode haben die Forscher eine bereits bekannte Tatsache bestätigt: Die mit Histonen verpackte DNA bewegt sich im Zellkern, und zwar abhängig von der Phase des Zellzyklus mit einer Geschwindigkeit von einigen Nanometern pro Sekunde. Sauer: „Der nächste Schritt ist es jetzt, den Ablauf der Zellteilung in hoher Auflösung unter dem Mikroskop zu verfolgen.“

(idw – Universität Würzburg, 10.08.2010 – DLO)

Teilen:
Anzeige

In den Schlagzeilen

Diaschauen zum Thema

Dossiers zum Thema

News des Tages

Feldhase

Genom des "Osterhasen" entschlüsselt

Erstes Bild der Magnetfelder ums Schwarze Loch

Ägypten: Wandbilder aus der Totenstadt

Wie das Klima den antarktischen Zirkumpolarstrom beeinflusst

Bücher zum Thema

Wie Zellen funktionieren - Wirtschaft und Produktion in der molekularen Welt von David S. Goodsell

Laser - Grundlagen und Anwendungen in Photonik, Technik, Medizin und Kunst von Dieter Bäuerle

Lehrbuch der Molekularen Zellbiologie - von Lutz Nover und Pascal von Koskull-Döring

Was treibt das Leben an? - Eine Reise in den Mikrokosmus der Zelle von Stephan Berry

Das Wunder des Lichts - DVD der BBC

Faszination Nanotechnologie - von Uwe Hartmann

Top-Clicks der Woche