Anzeige
Astronomie

Struktur eines weit entfernten Quasars aufgedeckt

Erstes hochaufgelöstes Bild mit dem Radioteleskop LOFAR gelungen

Radiobilder des Quasars 3C 196 bei 4 - 10 m Wellenlänge (Frequenz: 30 - 80 MHz). Links: Daten ausschließlich von den niederländischen LOFAR-Stationen. Die Auflösung reicht für die Identifikation von Substrukturen nicht aus. Rechts: Vergrößerter Ausschnitt des zentralen Bildbereichs unter Einschluss der deutschen LOFAR-Stationen. Die Auflösung des Bildes ist ca. 10mal höher und zeigt zum ersten Mal eine Reihe von Details in diesem Wellenlängenbereich. Die Farben entsprechen dem, was das menschliche Auge sehen könnte, wenn es für Wellenlängen empfindlich wäre, die 10 Millionen mal größer sind als die des sichtbaren Lichts. © Olaf Wucknitz / Universität Bonn

Mit dem Radioteleskop LOFAR (LOw Frequency Arrays) ist es einem internationalen Wissenschaftlerteam gelungen, das erste hochaufgelöste Bild eines weit entfernten Quasars bei Radiowellen im Meter-Bereich zu erhalten. Dieser Wellenlängenbereich war bisher für derart detailgenaue Messungen nicht zugänglich, da dafür Radioteleskope in großem gegenseitigen Abstand miteinander vernetzt werden müssen.

Die neue Aufnahme der detaillierten Struktur des Quasars 3C 196 zwischen vier und zehn Meter Wellenlänge konnte bereits mit einem kleinen Teil der Stationen des kompletten LOFAR-Netzwerks realisiert werden. Später wird es sich über einen ausgedehnten Bereich Europas erstrecken.

Erste Testmessungen

Das Max-Planck-Institut für Radioastronomie (Bonn) und das Max-Planck-Institut für Astrophysik (Garching) betreiben beide eine Station des europäischen LOFAR-Teleskops, das vom niederländischen Institut für Radioastronomie, ASTRON, koordiniert wird. Nach Testmessungen mit einzelnen LOFAR-Antennen konnten jetzt erstmals acht Stationen des LOFAR für eine gemeinsame Messung zusammengeschaltet werden. Dazu wurden fünf LOFAR-Stationen in den Niederlanden mit drei Stationen in Deutschland vernetzt, und zwar Effelsberg bei Bonn, Tautenburg bei Jena und Unterweilenbach bei München. Alle Antennen wurden auf den Quasar 3C 196 ausgerichtet, eine starke Radioquelle in einer Entfernung von mehreren Milliarden Lichtjahren.

„Wir haben dieses Objekt für unsere ersten Testmessungen ausgewählt, weil wir seine Struktur aus hochaufgelösten Beobachtungen bei kürzeren Wellenlängen schon ganz gut kennen“, sagt Olaf Wucknitz vom Argelander-Institut für Astronomie (AIfA) der Universität Bonn. „Das Ziel dabei war zunächst nicht, etwas Neues zu finden, sondern die gleichen oder zumindest ähnliche Strukturen auch bei sehr langen Wellenlängen zu identifizieren, um zu bestätigen, dass das neue Instrument exzellent arbeitet. Ohne die deutschen Stationen sehen wir nur einen verschwommenen Fleck ohne jegliche Substrukturen. Sobald wir aber die langen Basislinien dazufügen, eröffnen sich alle Details.“

Forscher betreten Neuland

Radiobeobachtungen des Himmels in dem von LOFAR abgedeckten Wellenlängenbereich sind nicht gänzlich neu. Tatsächlich haben die Pioniere der Radioastronomie in den 1930er Jahren genau in diesem Bereich angefangen. Sie waren jedoch nur in der Lage, ziemlich grobe Himmelskarten zu erstellen und Positionen sowie Strahlungsintensitäten einzelner Objekte festzulegen.

Anzeige

„Wir kehren jetzt zu einem lange vernachlässigten Wellenlängenbereich zurück“, sagt Michael Garrett von ASTRON. „Aber jetzt sind wir in der Lage, viel schwächere Objekte nachzuweisen und, was noch wichtiger ist, feine Details aufzulösen. Das eröffnet eine Reihe von neuen Möglichkeiten für die Forschung.“ Und Wucknitz ergänzt: „Die hohe Auflösung und große Empfindlichkeit von LOFAR bedeuten, dass wir wirklich Neuland betreten; die Analyse der Daten war auch entsprechend aufwändig. Wir mussten dazu eine Reihe völlig neuer Analysetechniken entwickeln. Trotzdem ist die Erstellung der Bilder bemerkenswert gut gelungen. Die Qualität der Daten ist erstaunlich.“

Gravitationslinsen im Visier

Der nächste Schritt für Wucknitz wird sein, LOFAR zur Untersuchung so genannter Gravitationslinsen zu nutzen, bei denen das Licht weit entfernter Objekte durch große Massenansammlungen verzerrt wird. Eine hohe Auflösung ist erforderlich, um einzelne Strukturen zu unterscheiden. Das wäre ohne die internationalen LOFAR-Stationen nicht möglich.

Die Winkelauflösung eines Netzwerks von Radioteleskopen, das heißt die Ausdehnung der kleinsten Strukturen, die aufgelöst und voneinander unterschieden werden können, hängt direkt vom Abstand zwischen den einzelnen Teleskopen ab. Je größer die Basislinien in Bezug auf die beobachtete Wellenlänge der Strahlung, desto besser die erreichte Auflösung. Zurzeit tragen die deutschen LOFAR-Stationen die ersten großen Basislinien zum gesamten Netzwerk bei und vergrößern die Auflösung um einen Faktor 10 gegenüber einer Nutzung allein der niederländischen Stationen.

Signalen aus der Frühzeit des Universums auf der Spur

„Wir möchten LOFAR dazu verwenden, nach Signalen aus der Frühzeit des Universums zu suchen“, sagt Benedetta Ciardi vom Max-Planck-Institut für Astrophysik (MPA) in Garching. „Da ich selbst aus der theoretischen Astrophysik komme, hätte ich nie gedacht, dass ich mal ein Radiobild so aufregend finden könnte. Aber die neuen Ergebnisse sind schon faszinierend.“

Eine weitere Verbesserung sollte schon bald durch Beobachtungen bei etwas kürzeren Wellenlängen erreicht werden, durch die die Auflösung nochmals um einen Faktor 4 gesteigert werden kann, so die Forscher. Dazu wird sich die Qualität der Abbildungen durch die Hinzunahme weiterer LOFAR-Stationen deutlich verbessern. Das Bild des Quasars 3C 196 ist nur ein erster, wenn auch wichtiger Schritt.

Auf dem Weg zum fertigen Netzwerk

„Die Bildqualität des fertigen Netzwerks wird sehr stark von der Gleichmäßigkeit abhängen, mit der große Gebiete Europas mit einzelnen LOFAR-Stationen überdeckt werden können“, sagt Anton Zensus vom Max-Planck-Institut für Radioastronomie (MPIfR). „Die deutschen Stationen bilden bereits einen unschätzbaren Beitrag zu dem internationalen Netzwerk. Was wir aber noch gut brauchen könnten, wäre eine Station in Norddeutschland, mit der wir die Lücke zwischen unseren jetzigen Stationen und denen unserer holländischen Freunde schließen. Das würde die Bildqualität nochmals erheblich verbessern.“

(Argelander-Institut für Astronomie, Universität Bonn / Max-Planck-Institut für Radioastronomie, 02.06.2010 – DLO)

Teilen:
Anzeige

In den Schlagzeilen

Diaschauen zum Thema

Dossiers zum Thema

Big Eyes - Riesenteleskope und die letzten Rätsel im Kosmos

News des Tages

Bücher zum Thema

Unser Fenster zum Weltraum - 400 Jahre Entdeckungen mit Teleskopen von Lars Lindberg Christensen und Govert Schilling

Hawkings neues Universum - Raum, Zeit und Ewigkeit von Rüdiger Vaas

Das Schicksal des Universums - Eine Reise vom Anfang zum Ende von Günther Hasinger

Was zu entdecken bleibt - Über die Geheimnisse des Universums, den Ursprung des Lebens und die Zukunft der Menschheit von John R. Maddox

Der Weltraum - Planeten, Sterne, Galaxien von Heather Couper & Nigel Henbest

Top-Clicks der Woche