• Schalter wissen.de
  • Schalter wissenschaft
  • Schalter scinexx
  • Schalter scienceblogs
  • Schalter damals
  • Schalter natur
Scinexx-Logo
Logo Fachmedien und Mittelstand
Scinexx-Claim
Facebook-Claim
Google+ Logo
Twitter-Logo
YouTube-Logo
Feedburner Logo
Samstag, 29.07.2017
Hintergrund Farbverlauf Facebook-Leiste Facebook-Leiste Facebook-Leiste
Scinexx-Logo Facebook-Leiste

Quantenteilchen auf der Schaukel

Physiker kontrollieren Eigenschwingung von Atomen

Mit einzelnen Atomen zu arbeiten ist mitunter schlimmer als Flöhe hüten - sie lassen sich nur mit speziellen Techniken kontrollieren. Physiker haben nun eine neue Methode ersonnen, Atomen ihren Willen aufzuzwingen: Ihnen ist es gelungen, die Eigenschwingung der kleinen Teilchen - ihre so genannte Wellenfunktion - präzise zu steuern. Der Ansatz öffnet Forschern aus verschiedenen Bereichen der Physik neue Türen, berichtet die Fachzeitschrift „Physical Review Letters“.
Caesium-Atom

Caesium-Atom

Atome haben eine Eigenschaft, die die Mitarbeiter viel beschäftigter Chefs nur zu gut kennen: Sie können sich theoretisch an vielen Orten gleichzeitig aufhalten, an jedem aber nur mit einer gewissen Wahrscheinlichkeit. Mit welcher Wahrscheinlichkeit man sie wo findet, beschreibt ihre Wellenfunktion.

Pinzette aus Licht


Es war bisher nur mit Einschränkungen möglich, die Wellenfunktion eines einzelnen Atoms zu kontrollieren. Den Forschern vom Institut für Angewandte Physik der Universität Bonn um Professor Dieter Meschede ist nun aber genau das gelungen. Sie arbeiteten dabei mit einzelnen Caesium-Atomen, die sie mit einer Art Pinzette aus Licht festhielten.

Man kann sich so ein Caesiumatom als ein Kind vorstellen, das auf einer Schaukel sitzt. Die Wellenfunktion beschreibt, wie sehr die Schaukel hin- und herschwingt. Um das Kind höher schwingen zu lassen, versetzt die Mama der Schaukel einfach einen Schubs. Je stärker dieser Schubs, desto größer die Auslenkung: Die Wellenfunktion der Schaukel ändert sich.


In der Welt der Atome ist das nicht so einfach. Das liegt an den Quanteneffekten, die in der Mikrowelt zum Tragen kommen und der atomaren Wellenfunktion somit nur festgelegte Profile erlauben. So muss der Schubs genau die passende Stärke haben, damit er etwas bewirkt. Ist er zu klein oder zu groß, ändert sich an der Schaukelschwingung gar nichts. Es gibt aber noch eine zweite Einschränkung: Die Wellenfunktionen vor und nach dem Schubs müssen eine gewisse Ähnlichkeit aufweisen - Physiker sprechen von „Überlappung“.

Forscher schubsen Atom


„Wir haben nun unser Atom mit Mikrowellenstrahlung angeregt, ihm also einen Schubs versetzt“, erklärt der Bonner Physiker Artur Widera. „Mikrowellen lassen sich sehr gut kontrollieren. Wir konnten die zugeführte Energiemenge daher extrem präzise einstellen.“

Normalerweise hätte der Schubs dieser Strahlung nicht ausgereicht, um die Bewegung des Caesiums zu verändern. Die Forscher haben nun aber gewissermaßen den Aufhängepunkt der Atomschaukel um wenige Millionstel Millimeter im Raum verschoben. „Dadurch konnten wir den Wellenfunktionsüberlapp genau so einstellen, dass der Mikrowellen-Schubs doch zu einer Änderung der Schaukelbewegung führte.“

Wellenfunktion von Atomen mit großer Präzision verändert


„Wir können so erstmals die Wellenfunktion von Atomen mit hoher Präzision ändern“, sagt Wideras Kollege Leonid Förster. „Damit können wir in der Schaukelbewegung der Atome beispielsweise Informationen speichern. Außerdem ist es denkbar, die Bewegung mit dieser Methode komplett zu stoppen. So ließen sich Atome bis zu ihrem Grundzustand nahe am absoluten Nullpunkt kühlen.“
(idw - Universität Bonn, 10.12.2009 - DLO)
 
Printer IconShare Icon