• Schalter wissen.de
  • Schalter wissenschaft
  • Schalter scinexx
  • Schalter scienceblogs
  • Schalter damals
  • Schalter natur
Scinexx-Logo
Logo Fachmedien und Mittelstand
Scinexx-Claim
Facebook-Claim
Google+ Logo
Twitter-Logo
YouTube-Logo
Feedburner Logo
Montag, 29.05.2017
Hintergrund Farbverlauf Facebook-Leiste Facebook-Leiste Facebook-Leiste
Scinexx-Logo Facebook-Leiste

Nur keine Hemmungen?

Grundlagen hemmender Signale im Gehirn entschlüsselt

Was für soziale Beziehungen gilt, ist auch für das menschliche Gehirn wichtig: Hemmungslosigkeit führt ins Chaos. Wird die hemmende Signalübertragung zwischen Nervenzellen im Gehirn gestört, kommt es zu katastrophalen Fehlfunktionen. Epilepsie, Angsterkrankungen oder Schizophrenie können die Folge sein. Hirnforscher haben nun die molekularen Grundlagen hemmender Signalübertragung im Gehirn entschlüsselt und berichten über ihre Ergebnisse in der Fachzeitschrift „Neuron“.
Hippocampus

Hippocampus

Die Augen sind verdreht, alle Muskeln des Körpers ziehen sich zusammen, der Körper verkrampft sich rhythmisch, die Atmung geht stoßweise und Schaum tritt vor den Mund - ein großer epileptischer Anfall ist für sowohl für Betroffene als auch für Augenzeugen erschütternd. Die Ursache für solche „Grand-Mal“-Anfälle ist eine unkontrollierte Erregung der Nervenzellen im Gehirn. Allerdings ist in vielen Fällen nicht die übermäßige Erregbarkeit der Nervenzellen das Grundproblem, sondern eine Störung der hemmenden Signalübertragung.

Die Übertragung von Informationen zwischen Nervenzellen erfolgt über so genannte Synapsen. An diesen mikroskopisch kleinen Zellstrukturen treten sendende und empfangende Nervenzellen miteinander in Kontakt. Zur Signalübertragung schüttet eine elektrisch erregte sendende Nervenzelle Botenstoffe - oder Neurotransmitter - aus, die an spezialisierte Rezeptorproteine auf der Oberfläche der empfangenden Nervenzelle binden und deren Erregung steuern.

Erregende und hemmende Synapsen


Die meisten Synapsen im menschlichen Gehirn sind erregend. Die Informationsübertragung an solchen erregenden Synapsen löst elektrische Entladungen in der Empfängerzelle aus, so genannte Aktionspotentiale, mit Hilfe derer das Gehirn Informationen codiert. Das Nervenzellnetzwerk erregender Synapsen wird durch ein hemmendes Synapsensystem ergänzt, das die Erregbarkeit des Gehirns kontrolliert, verschiedene Hirnbereiche synchronisiert und die Informationsverarbeitung im Gehirn maßgeblich beeinflusst.


Hemmende Synapsen im menschlichen Nervensystem verwenden hauptsächlich die Neurotransmitter GABA und Glycin. Auf der empfangenden Seite besitzen sie spezialisierte Rezeptorproteine für GABA und Glycin, deren Aktivierung die Empfängerzelle so beeinflusst, dass sie nicht mehr oder nur sehr schwer erregt werden kann. Bisher war jedoch unklar, wie diese hemmenden Synapsen, von denen es in unserem Gehirn viele Milliarden gibt, überhaupt entstehen und wie sie mit den richtigen Rezeptorproteinen für GABA und Glycin ausgestattet werden.

Kontakt- und Gerüstproteine ermöglichen Synapsenbildung


Die Hirnforscher Frédérique Varoqueaux, Nils Brose und Alexandros Poulopoulos vom Göttinger Max-Planck-Institut für Experimentelle Medizin haben nun zusammen mit dem Münsteraner Physiologen Weiqi Zhang und ihrem Frankfurter Kollegen Theofilos Papadopoulos vom Max-Planck-Institut für Hirnforschung einen Schlüsselmechanismus entdeckt, der für die Rekrutierung von GABA- und Glycin-Rezeptoren an hemmende Synapsen verantwortlich ist.

„Unsere Arbeiten zeigen, dass das Protein Neuroligin-2 bei der Entstehung hemmender Synapsen eine kritische Rolle spielt“, erklärt Varoqueaux. „Neuroligin-2 ist ein Zelladhäsionsprotein, das heißt es vermittelt den Zellzusammenhalt. Wie ein Klettverschluss sorgen Neuroligin-2-Moleküle zunächst dafür, dass der sendende Teil der Synapse mit dem empfangenden Teil Kontakt aufnehmen kann. Innerhalb des Empfängerteils der Synapse binden die Neuroligin-2-Moleküle an zwei Schlüsselproteine hemmender Synapsen, Collybistin und Gephyrin, die für die Verankerung von GABA- und Glycin-Rezeptoren sorgen.“

Genetisch veränderte Mäuse im Einsatz


Neuroligin-2, das Gerüstprotein Gephyrin und das Regulatorprotein Collybistin sind für die Entstehung von hemmenden Synapsen unabdingbar. „Schaltet man die entsprechenden Gene in Mäusen aus, wird die Ausbildung hemmender Synapsen fundamental gestört“, so Poulopoulos und Papadopoulos.

Die griechischen Gastwissenschaftler haben Mäuse genetisch so verändert, dass sie kein Neuroligin-2 oder kein Collybistin erzeugen können. In beiden Fällen werden hemmende Synapsen in verschiedenen Hirnbereichen nicht mehr korrekt mit den notwendigen GABA- und Glycin-Rezeptoren ausgestattet. „Die Folgen sind eine stark erhöhte Neigung zu Angstverhalten und eine extrem gesteigerte Erregbarkeit des Gehirns.“

Proteinnetzwerk auch an Epilepsie beteiligt


Die Forscher um Varoqueaux, Zhang und Brose haben mit ihrer Arbeit nicht nur eine fundamentale Frage der neurowissenschaftlichen Grundlagenforschung geklärt. „Neuere Arbeiten verschiedener Kollegen zeigen, dass eine genetisch verursachte Störung des von uns beschriebenen Proteinnetzwerks aus Neuroligin-2, Collybistin und Gephyrin beim Menschen zu Epilepsie führen kann“, berichtet der Physiologe Zhang. Er und seine Kollegen sind deshalb davon überzeugt, dass ihre neue Entdeckung auch von medizinischer Bedeutung sein wird.

Seine Kollegin Varoqueaux ergänzt: „Der von uns beschriebene Mechanismus der Entstehung hemmender Synapsen im Gehirn bestimmt, wie gut eine solche Synapse funktioniert. Es ist sehr wahrscheinlich, dass eine Störung dieses Prozesses bei verschiedenen Epilepsie-Formen und möglicherweise auch bei Angststörungen und anderen Hirnerkrankungen eine Rolle spielt.“

Die Forscher wollen sich deshalb nun der Frage widmen, wie die Entstehung hemmender Synapsen reguliert wird und ob man diesen Prozess zu therapeutischen Zwecken beeinflussen kann.
(idw - MPG, 11.09.2009 - DLO)
 
Printer IconShare Icon